Mehrotra Shreya, Chouhan Dimple, Konwarh Rocktotpal, Kumar Manishekhar, Jadi Praveen Kumar, Mandal Biman B
Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
Biotechnology Department, Addis Ababa Science and Technology University, Addis Ababa-16417, Ethiopia.
ACS Biomater Sci Eng. 2019 May 13;5(5):2054-2078. doi: 10.1021/acsbiomaterials.8b01560. Epub 2019 Apr 2.
Materials at the nanoscale offer numerous avenues to be explored and exploited in diverse realms. Among others, proteinaceous biomaterials such as silk hold immense prospects in the domain of nanoengineering. Silk offers a unique combination of desirable facets like biocompatibility; extraordinary mechanical properties, such as elongation, elasticity, toughness, and modulus; and tunable biodegradability which are far better than most naturally occurring and engineered materials. Much of these properties are due to the molecular structure of the silk protein and it is self-assembly into hierarchical structures. Taking advantage of the hierarchical assembly, a large number of fabrication strategies have now emerged that allow the tailoring of silk structure of at the nanoscale. Harnessing the favorable properties of silk, such methods offer a promising direction toward producing structurally and functionally optimized silk nanomaterials. This review discusses the critical structure-property relationship in silk that occurs at the nanoscale and also aims to bring out the recent status in the approaches for fabrication, characterization, and the gamut of applications of various silk-based nanomaterials (nanoparticles, nanofibers, and nanocomposites) in the niche of translational research. Harnessing the favorable nanostructure of silk, the review also takes into account the impetus of silk in applications such as chemo-biosensing, energy harvesting, microfluidics, and environmental applications.
纳米级材料在各个领域提供了众多有待探索和利用的途径。其中,诸如丝绸等蛋白质类生物材料在纳米工程领域有着巨大的前景。丝绸具有生物相容性等一系列理想特性的独特组合;非凡的机械性能,如伸长率、弹性、韧性和模量;以及可调节的生物降解性,这些都远优于大多数天然和工程材料。这些特性大多归因于丝绸蛋白的分子结构及其自组装成层次结构。利用这种层次组装,现在已经出现了大量的制造策略,能够在纳米尺度上定制丝绸结构。利用丝绸的优良特性,这些方法为生产结构和功能优化的丝绸纳米材料提供了一个有前景的方向。本综述讨论了丝绸在纳米尺度上的关键结构 - 性能关系,还旨在阐述各种丝绸基纳米材料(纳米颗粒、纳米纤维和纳米复合材料)在转化研究领域的制造、表征方法以及应用范围的最新进展。利用丝绸有利的纳米结构,本综述还考虑了丝绸在化学 - 生物传感、能量收集、微流体和环境应用等领域的推动作用。
ACS Biomater Sci Eng. 2019-5-13
Adv Funct Mater. 2018-12-27
Biotechnol Adv. 2016-5-7
Nanomaterials (Basel). 2020-9-16
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018-2-2
Acc Chem Res. 2019-9-19
ACS Appl Bio Mater. 2019-12-16
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018-6-25
Sheng Wu Gong Cheng Xue Bao. 2019-6-25
Biomimetics (Basel). 2024-3-11
Biomimetics (Basel). 2023-12-15
Front Bioeng Biotechnol. 2023-11-16
Nanomaterials (Basel). 2023-1-4
Pharmaceutics. 2022-8-25