文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Review of Spider Silk Applications in Biomedical and Tissue Engineering.

作者信息

Branković Marija, Zivic Fatima, Grujovic Nenad, Stojadinovic Ivan, Milenkovic Strahinja, Kotorcevic Nikola

机构信息

Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia.

Faculty of Engineering, University of Kragujevac, Liceja Knezevine Srbije 1A, 34000 Kragujevac, Serbia.

出版信息

Biomimetics (Basel). 2024 Mar 11;9(3):169. doi: 10.3390/biomimetics9030169.


DOI:10.3390/biomimetics9030169
PMID:38534854
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10967872/
Abstract

This review will present the latest research related to the production and application of spider silk and silk-based materials in reconstructive and regenerative medicine and tissue engineering, with a focus on musculoskeletal tissues, and including skin regeneration and tissue repair of bone and cartilage, ligaments, muscle tissue, peripheral nerves, and artificial blood vessels. Natural spider silk synthesis is reviewed, and the further recombinant production of spider silk proteins. Research insights into possible spider silk structures, like fibers (1D), coatings (2D), and 3D constructs, including porous structures, hydrogels, and organ-on-chip designs, have been reviewed considering a design of bioactive materials for smart medical implants and drug delivery systems. Silk is one of the toughest natural materials, with high strain at failure and mechanical strength. Novel biomaterials with silk fibroin can mimic the tissue structure and promote regeneration and new tissue growth. Silk proteins are important in designing tissue-on-chip or organ-on-chip technologies and micro devices for the precise engineering of artificial tissues and organs, disease modeling, and the further selection of adequate medical treatments. Recent research indicates that silk (films, hydrogels, capsules, or liposomes coated with silk proteins) has the potential to provide controlled drug release at the target destination. However, even with clear advantages, there are still challenges that need further research, including clinical trials.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/22df3a20ac34/biomimetics-09-00169-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/9bf7d3e0370c/biomimetics-09-00169-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/924525fc20cb/biomimetics-09-00169-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/45fba607a0aa/biomimetics-09-00169-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/8949e5e42187/biomimetics-09-00169-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/cd7f36054bfc/biomimetics-09-00169-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/9c1560453e23/biomimetics-09-00169-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/d46022bdc241/biomimetics-09-00169-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/fb3f899b9976/biomimetics-09-00169-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/22df3a20ac34/biomimetics-09-00169-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/9bf7d3e0370c/biomimetics-09-00169-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/924525fc20cb/biomimetics-09-00169-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/45fba607a0aa/biomimetics-09-00169-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/8949e5e42187/biomimetics-09-00169-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/cd7f36054bfc/biomimetics-09-00169-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/9c1560453e23/biomimetics-09-00169-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/d46022bdc241/biomimetics-09-00169-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/fb3f899b9976/biomimetics-09-00169-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a6/10967872/22df3a20ac34/biomimetics-09-00169-g009.jpg

相似文献

[1]
Review of Spider Silk Applications in Biomedical and Tissue Engineering.

Biomimetics (Basel). 2024-3-11

[2]
Spider Silk for Tissue Engineering Applications.

Molecules. 2020-2-8

[3]
A review on advances in the applications of spider silk in biomedical issues.

Int J Biol Macromol. 2021-12-1

[4]
Silk protein-based hydrogels: Promising advanced materials for biomedical applications.

Acta Biomater. 2015-11-18

[5]
Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications.

Adv Exp Med Biol. 2019

[6]
Nonmulberry silk proteins: multipurpose ingredient in bio-functional assembly.

Biomed Mater. 2021-9-22

[7]
Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside.

Acta Biomater. 2020-2

[8]
Bioactive Silk Fibroin-Based Hybrid Biomaterials for Musculoskeletal Engineering: Recent Progress and Perspectives.

ACS Appl Bio Mater. 2021-9-20

[9]
Silk scaffolds for musculoskeletal tissue engineering.

Exp Biol Med (Maywood). 2016-2

[10]
Recombinant spider silk proteins for applications in biomaterials.

Macromol Biosci. 2010-9-9

引用本文的文献

[1]
Impact of conduit-filling interactions on the efficacy of fiber and hydrogel fillers in nerve conduits.

iScience. 2025-7-18

[2]
Hydrogel-Based Scaffolds: Advancing Bone Regeneration Through Tissue Engineering.

Gels. 2025-2-27

[3]
Delivery of Polypeptide Drugs Using Nanoparticles Made of Recombinant Spider Silks Derived From MaSp4 Protein.

Int J Nanomedicine. 2025-3-3

[4]
Advancements in Wound Dressing Materials: Highlighting Recent Progress in Hydrogels, Foams, and Antimicrobial Dressings.

Gels. 2025-2-7

[5]
Silk Protein Gene Engineering and Its Applications: Recent Advances in Biomedicine Driven by Molecular Biotechnology.

Drug Des Devel Ther. 2025-1-25

[6]
Enhanced osteogenic potential of spider silk fibroin-based composite scaffolds incorporating carboxymethyl cellulose for bone tissue engineering.

Biomater Biosyst. 2024-11-19

[7]
Advances in arthropod-inspired bionic materials for wound healing.

Mater Today Bio. 2024-10-22

[8]
Nature's Load-Bearing Design Principles and Their Application in Engineering: A Review.

Biomimetics (Basel). 2024-9-9

[9]
Mapping the blueprint of artificial blood vessels research: a bibliometric analysis.

Int J Surg. 2025-1-1

本文引用的文献

[1]
4D Printing: The Development of Responsive Materials Using 3D-Printing Technology.

Pharmaceutics. 2023-12-7

[2]
Application and development of hydrogel biomaterials for the treatment of intervertebral disc degeneration: a literature review.

Front Cell Dev Biol. 2023-12-7

[3]
Silk Fibroin Improves the Biological Properties of Egg White-Based Bioink for the Bioprinting of Tissue Engineering Materials.

ACS Omega. 2023-11-27

[4]
Water-responsive supercontractile polymer films for bioelectronic interfaces.

Nature. 2023-12

[5]
Resorbable Membranes for Guided Bone Regeneration: Critical Features, Potentials, and Limitations.

ACS Mater Au. 2023-6-23

[6]
Polymeric biomaterials: Advanced drug delivery systems in osteoarthritis treatment.

Heliyon. 2023-11-1

[7]
Modeling the 3-dimensional structure of the silkworm's spinning apparatus in silk production.

Acta Biomater. 2024-1-15

[8]
Development of a bioactive silk fibroin bilayer scaffold for wound healing and scar inhibition.

Int J Biol Macromol. 2024-1

[9]
Natural Multifunctional Silk Microcarriers for Noise-Induced Hearing Loss Therapy.

Adv Sci (Weinh). 2024-1

[10]
Silk fibroin-derived electrospun materials for biomedical applications: A review.

Int J Biol Macromol. 2024-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索