Zhou Shuai, Ding Chendi, Wang Yang, Jiang Wei, Fu Jiajun
State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China.
ACS Biomater Sci Eng. 2019 Nov 11;5(11):6022-6035. doi: 10.1021/acsbiomaterials.9b01227. Epub 2019 Nov 1.
Integrating multimodality bioimaging and multiple stimuli-responsive controlled drug release properties into one single nanosystem for therapeutic application is highly desirable but still remains a challenge. Herein, we coated a hollow mesoporous silica shell on to upconversion nanoparticles (UCNPs) and conjugated pillarene-based supramolecular valves on to surface of UCNPs@hm-SiO using amine-coumarin phototriggers to obtain the multifunctional nanoparticles, UCNPs@hm-SiO-Cou-Cys-DOX/WP[5]. Benefiting from the core-shell structured UCNPs, the UCNPs@hm-SiO-Cou-Cys-DOX/WP[5] can serve as efficient contrast agents for upconversion luminescence and -weighted magnetic resonance imaging in vitro/in vivo. More importantly, depending on exquisitely designed supramolecular valves, UCNPs@hm-SiO-Cou-Cys-DOX/WP[5] can realize zero-premature release under normal physiological conditions (pH 7.4), which produces minimal damage to normal tissue, whereas this nanosystem can respond to several disease-related signals, including acid (most cancers), alkali (metabolic alkalosis), and Zn (Alzheimer's disease), along with two external stimuli, including near-infrared (NIR) light and reductive electrical potential, via altering the spatial structure of pseudorotaxanes, disassembling the molecular stalks, or undergoing photochemical reactions, ultimately resulting in opening of the gatekeepers and release of encapsulated drugs. The multifunctional UCNP-based nanoparticles were endowed with such quintuple stimuli-responsive controlled release characteristics. Specifically, in anticancer application, the rational utilization of the two of them, acid and NIR light, could regulate the release amount and rate of DOX from UCNPs@hm-SiO-Cou-Cys-DOX/WP[5], accelerate the accumulation of DOX in cell nuclei, and thereby promote the cancer cell apoptosis, indicating that the nanomaterials have promising application in cancer treatment. This study provides a novel design strategy for constructing multifunctional UCNP-based nanoparticles with multiple stimuli-responsive drug release features, which have great potential in diagnosis and therapy of relevant diseases as theranostic nanomedicines.
将多模态生物成像和多种刺激响应性控释药物特性整合到一个单一的纳米系统中用于治疗应用是非常理想的,但仍然是一个挑战。在此,我们在镧系元素掺杂的上转换纳米颗粒(UCNPs)上包覆了一层中空介孔二氧化硅壳,并使用胺-香豆素光触发器在UCNPs@hm-SiO表面共轭基于柱芳烃的超分子阀门,以获得多功能纳米颗粒UCNPs@hm-SiO-Cou-Cys-DOX/WP[5]。得益于核壳结构的UCNPs,UCNPs@hm-SiO-Cou-Cys-DOX/WP[5]可作为体外/体内上转换发光和磁共振成像的有效造影剂。更重要的是,基于精心设计的超分子阀门,UCNPs@hm-SiO-Cou-Cys-DOX/WP[5]在正常生理条件(pH 7.4)下可实现零过早释放,对正常组织产生最小的损伤,而该纳米系统可响应多种疾病相关信号,包括酸性(大多数癌症)碱性(代谢性碱中毒)和锌(阿尔茨海默病),以及两种外部刺激,包括近红外(NIR)光和还原电势,通过改变准轮烷的空间结构、拆解分子茎或进行光化学反应,最终导致守门人打开并释放封装的药物。基于UCNP的多功能纳米颗粒具有这种五重刺激响应性控释特性。具体而言,在抗癌应用中,合理利用其中的酸性和近红外光两者,可以调节DOX从UCNPs@hm-SiO-Cou-Cys-DOX/WP[5]的释放量和速率,加速DOX在细胞核中的积累,从而促进癌细胞凋亡,表明该纳米材料在癌症治疗中具有广阔的应用前景。本研究为构建具有多种刺激响应性药物释放特征的基于UCNP的多功能纳米颗粒提供了一种新颖的设计策略,这些纳米颗粒作为治疗诊断纳米药物在相关疾病的诊断和治疗中具有巨大潜力。