Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
Int J Mol Sci. 2022 Aug 12;23(16):9003. doi: 10.3390/ijms23169003.
Upconversion (UC) nanostructures, which can upconvert near-infrared (NIR) light with low energy to visible or UV light with higher energy, are investigated for theranostic applications. The surface of lanthanide (Ln)-doped UC nanostructures can be modified with different functional groups and bioconjugated with biomolecules for therapeutic systems. On the other hand, organic molecular-based UC nanostructures, by using the triplet-triplet annihilation (TTA) UC mechanism, have high UC quantum yields and do not require high excitation power. In this review, the major UC mechanisms in different nanostructures have been introduced, including the Ln-doped UC mechanism and the TTA UC mechanism. The design and fabrication of Ln-doped UC nanostructures and TTA UC-based UC nanostructures for theranostic applications have been reviewed and discussed. In addition, the current progress in the application of UC nanostructures for diagnosis and therapy has been summarized, including tumor-targeted bioimaging and chemotherapy, image-guided diagnosis and phototherapy, NIR-triggered controlled drug releasing and bioimaging. We also provide insight into the development of emerging UC nanostructures in the field of theranostics.
上转换(UC)纳米结构可以将低能量的近红外(NIR)光上转换为高能量的可见光或紫外光,因此被用于治疗诊断应用。镧系(Ln)掺杂的 UC 纳米结构的表面可以用不同的官能团进行修饰,并与生物分子进行生物共轭,用于治疗系统。另一方面,基于有机分子的 UC 纳米结构通过使用三重态-三重态湮灭(TTA)UC 机制,具有较高的 UC 量子产率,并且不需要高激发功率。在这篇综述中,介绍了不同纳米结构中的主要 UC 机制,包括 Ln 掺杂的 UC 机制和 TTA UC 机制。讨论并综述了用于治疗诊断应用的 Ln 掺杂 UC 纳米结构和 TTA UC 基 UC 纳米结构的设计和制造。此外,总结了 UC 纳米结构在诊断和治疗中的应用的最新进展,包括肿瘤靶向生物成像和化学疗法、图像引导诊断和光疗、NIR 触发的控制药物释放和生物成像。我们还深入探讨了治疗诊断领域新兴 UC 纳米结构的发展。