Suppr超能文献

用于模拟肺纤维化的成纤维细胞活化生物工程组织模型

Bioengineered Tissue Model of Fibroblast Activation for Modeling Pulmonary Fibrosis.

作者信息

Sundarakrishnan Aswin, Zukas Heather, Coburn Jeannine, Bertini Brian T, Liu Zhiyi, Georgakoudi Irene, Baugh Lauren, Dasgupta Queeny, Black Lauren D, Kaplan David L

机构信息

Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.

Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, Massachusetts 01605, United States.

出版信息

ACS Biomater Sci Eng. 2019 May 13;5(5):2417-2429. doi: 10.1021/acsbiomaterials.8b01262. Epub 2019 Apr 26.

Abstract

Idiopathic pulmonary fibrosis (IPF) is a complex disease of unknown etiology with no current curative treatment. Modeling pulmonary fibrotic (PF) tissue has the potential to improve our understanding of IPF disease progression and treatment. Rodent animal models do not replicate human fibroblastic foci (Hum-FF) pathology, and current iterations of model systems (e.g., collagen hydrogels, polyacrylamide hydrogels, and fibrosis-on-chip systems) are unable to replicate the three-dimensional (3D) complexity and biochemical composition of human PF tissue. Herein, we fabricated a 3D bioengineered pulmonary fibrotic (Eng-PF) tissue utilizing cell laden silk collagen type I dityrosine cross-linked hydrogels and Flexcell bioreactors. We show that silk collagen type I hydrogels have superior stability and mechanical tunability compared to other hydrogel systems. Using customized Flexcell bioreactors, we reproduced Hum-FF-like pathology with airway epithelial and microvascular endothelial cells. Eng-PF tissues can model myofibroblast differentiation and permit evaluation of antifibrotic drug treatments. Further, Eng-PF tissues could be used to model different facets of IPF disease, including epithelial injury with the addition of bleomycin and cellular recruitment by perfusion of cells through the hydrogel microchannel.

摘要

特发性肺纤维化(IPF)是一种病因不明的复杂疾病,目前尚无治愈性治疗方法。构建肺纤维化(PF)组织模型有可能增进我们对IPF疾病进展和治疗的理解。啮齿动物模型无法复制人类成纤维细胞灶(Hum-FF)病理,而目前的模型系统迭代(如胶原蛋白水凝胶、聚丙烯酰胺水凝胶和芯片上纤维化系统)无法复制人类PF组织的三维(3D)复杂性和生化组成。在此,我们利用负载细胞的I型丝素胶原蛋白二酪氨酸交联水凝胶和Flexcell生物反应器构建了一种3D生物工程肺纤维化(Eng-PF)组织。我们表明,与其他水凝胶系统相比,I型丝素胶原蛋白水凝胶具有更好的稳定性和机械可调性。使用定制的Flexcell生物反应器,我们用气道上皮细胞和微血管内皮细胞再现了类似Hum-FF的病理。Eng-PF组织可以模拟肌成纤维细胞分化,并允许评估抗纤维化药物治疗。此外,Eng-PF组织可用于模拟IPF疾病的不同方面,包括添加博来霉素后的上皮损伤以及通过水凝胶微通道灌注细胞进行细胞募集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验