Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, 2115 Scranton Street, Suite 3010, Aurora, Colorado 80045-2559, United States.
Department of Pediatrics, University of Colorado, Anschutz Medical Campus, 2115 Scranton Street, Suite 3010, Aurora, Colorado 80045-2559, United States.
ACS Appl Mater Interfaces. 2023 Mar 29;15(12):15071-15083. doi: 10.1021/acsami.2c18330. Epub 2023 Mar 14.
Tissue fibrosis remains a serious health condition with high morbidity and mortality rates. There is a critical need to engineer model systems that better recapitulate the spatial and temporal changes in the fibrotic extracellular microenvironment and enable study of the cellular and molecular alterations that occur during pathogenesis. Here, we present a process for chemically modifying human decellularized extracellular matrix (dECM) and incorporating it into a dynamically tunable hybrid-hydrogel system containing a poly(ethylene glycol)-α methacrylate (PEGαMA) backbone. Following modification and characterization, an off-stoichiometry thiol-ene Michael addition reaction resulted in hybrid-hydrogels with mechanical properties that could be tuned to recapitulate many healthy tissue types. Next, photoinitiated, free-radical homopolymerization of excess α-methacrylates increased crosslinking density and hybrid-hydrogel elastic modulus to mimic a fibrotic microenvironment. The incorporation of dECM into the PEGαMA hydrogel decreased the elastic modulus and, relative to fully synthetic hydrogels, increased the swelling ratio, the average molecular weight between crosslinks, and the mesh size of hybrid-hydrogel networks. These changes were proportional to the amount of dECM incorporated into the network. Dynamic stiffening increased the elastic modulus and decreased the swelling ratio, average molecular weight between crosslinks, and the mesh size of hybrid-hydrogels, as expected. Stiffening also activated human fibroblasts, as measured by increases in average cellular aspect ratio (1.59 ± 0.02 to 2.98 ± 0.20) and expression of α-smooth muscle actin (αSMA). Fibroblasts expressing αSMA increased from 25.8 to 49.1% upon dynamic stiffening, demonstrating that hybrid-hydrogels containing human dECM support investigation of dynamic mechanosensing. These results improve our understanding of the biomolecular networks formed within hybrid-hydrogels: this fully human phototunable hybrid-hydrogel system will enable researchers to control and decouple the biochemical changes that occur during fibrotic pathogenesis from the resulting increases in stiffness to study the dynamic cell-matrix interactions that perpetuate fibrotic diseases.
组织纤维化仍然是一种严重的健康状况,其发病率和死亡率都很高。因此,急需设计出更好地再现纤维化细胞外微环境的时空变化的模型系统,并能够研究发病过程中发生的细胞和分子变化。在这里,我们提出了一种化学修饰人去细胞细胞外基质(dECM)并将其纳入含有聚乙二醇-α甲基丙烯酸酯(PEGαMA)主链的动态可调谐混合水凝胶系统的方法。经过修饰和表征,非化学计量硫醇-烯迈克尔加成反应导致混合水凝胶具有可调节的机械性能,可模拟许多健康的组织类型。接下来,过量α-甲基丙烯酰基的光引发自由基均聚增加了交联密度和混合水凝胶弹性模量,以模拟纤维化的微环境。将 dECM 掺入 PEGαMA 水凝胶中会降低弹性模量,并且相对于完全合成的水凝胶,增加了水凝胶的交联密度和弹性模量。水凝胶网络的溶胀比、平均交联分子量和网络的网格尺寸。这些变化与掺入网络中的 dECM 量成正比。动态变硬会增加弹性模量,降低水凝胶的溶胀比、平均交联分子量和网络的网格尺寸,这是意料之中的。如平均细胞纵横比(1.59 ± 0.02 至 2.98 ± 0.20)和α-平滑肌肌动蛋白(αSMA)表达的增加所测量的,变硬还激活了人成纤维细胞。在动态变硬时,表达αSMA 的成纤维细胞从 25.8%增加到 49.1%,表明含有人 dECM 的混合水凝胶支持对动态机械感觉的研究。这些结果提高了我们对混合水凝胶中形成的生物分子网络的理解:这个完全人为的光可调谐混合水凝胶系统将使研究人员能够控制和分离纤维化发病过程中发生的生化变化与其导致的硬度增加,以研究维持纤维化疾病的动态细胞-基质相互作用。