Suppr超能文献

用于组织纤维化的光调控杂化水凝胶模型中人类脱细胞细胞外基质的化学修饰。

Chemical Modification of Human Decellularized Extracellular Matrix for Incorporation into Phototunable Hybrid-Hydrogel Models of Tissue Fibrosis.

机构信息

Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, 2115 Scranton Street, Suite 3010, Aurora, Colorado 80045-2559, United States.

Department of Pediatrics, University of Colorado, Anschutz Medical Campus, 2115 Scranton Street, Suite 3010, Aurora, Colorado 80045-2559, United States.

出版信息

ACS Appl Mater Interfaces. 2023 Mar 29;15(12):15071-15083. doi: 10.1021/acsami.2c18330. Epub 2023 Mar 14.

Abstract

Tissue fibrosis remains a serious health condition with high morbidity and mortality rates. There is a critical need to engineer model systems that better recapitulate the spatial and temporal changes in the fibrotic extracellular microenvironment and enable study of the cellular and molecular alterations that occur during pathogenesis. Here, we present a process for chemically modifying human decellularized extracellular matrix (dECM) and incorporating it into a dynamically tunable hybrid-hydrogel system containing a poly(ethylene glycol)-α methacrylate (PEGαMA) backbone. Following modification and characterization, an off-stoichiometry thiol-ene Michael addition reaction resulted in hybrid-hydrogels with mechanical properties that could be tuned to recapitulate many healthy tissue types. Next, photoinitiated, free-radical homopolymerization of excess α-methacrylates increased crosslinking density and hybrid-hydrogel elastic modulus to mimic a fibrotic microenvironment. The incorporation of dECM into the PEGαMA hydrogel decreased the elastic modulus and, relative to fully synthetic hydrogels, increased the swelling ratio, the average molecular weight between crosslinks, and the mesh size of hybrid-hydrogel networks. These changes were proportional to the amount of dECM incorporated into the network. Dynamic stiffening increased the elastic modulus and decreased the swelling ratio, average molecular weight between crosslinks, and the mesh size of hybrid-hydrogels, as expected. Stiffening also activated human fibroblasts, as measured by increases in average cellular aspect ratio (1.59 ± 0.02 to 2.98 ± 0.20) and expression of α-smooth muscle actin (αSMA). Fibroblasts expressing αSMA increased from 25.8 to 49.1% upon dynamic stiffening, demonstrating that hybrid-hydrogels containing human dECM support investigation of dynamic mechanosensing. These results improve our understanding of the biomolecular networks formed within hybrid-hydrogels: this fully human phototunable hybrid-hydrogel system will enable researchers to control and decouple the biochemical changes that occur during fibrotic pathogenesis from the resulting increases in stiffness to study the dynamic cell-matrix interactions that perpetuate fibrotic diseases.

摘要

组织纤维化仍然是一种严重的健康状况,其发病率和死亡率都很高。因此,急需设计出更好地再现纤维化细胞外微环境的时空变化的模型系统,并能够研究发病过程中发生的细胞和分子变化。在这里,我们提出了一种化学修饰人去细胞细胞外基质(dECM)并将其纳入含有聚乙二醇-α甲基丙烯酸酯(PEGαMA)主链的动态可调谐混合水凝胶系统的方法。经过修饰和表征,非化学计量硫醇-烯迈克尔加成反应导致混合水凝胶具有可调节的机械性能,可模拟许多健康的组织类型。接下来,过量α-甲基丙烯酰基的光引发自由基均聚增加了交联密度和混合水凝胶弹性模量,以模拟纤维化的微环境。将 dECM 掺入 PEGαMA 水凝胶中会降低弹性模量,并且相对于完全合成的水凝胶,增加了水凝胶的交联密度和弹性模量。水凝胶网络的溶胀比、平均交联分子量和网络的网格尺寸。这些变化与掺入网络中的 dECM 量成正比。动态变硬会增加弹性模量,降低水凝胶的溶胀比、平均交联分子量和网络的网格尺寸,这是意料之中的。如平均细胞纵横比(1.59 ± 0.02 至 2.98 ± 0.20)和α-平滑肌肌动蛋白(αSMA)表达的增加所测量的,变硬还激活了人成纤维细胞。在动态变硬时,表达αSMA 的成纤维细胞从 25.8%增加到 49.1%,表明含有人 dECM 的混合水凝胶支持对动态机械感觉的研究。这些结果提高了我们对混合水凝胶中形成的生物分子网络的理解:这个完全人为的光可调谐混合水凝胶系统将使研究人员能够控制和分离纤维化发病过程中发生的生化变化与其导致的硬度增加,以研究维持纤维化疾病的动态细胞-基质相互作用。

相似文献

1
Chemical Modification of Human Decellularized Extracellular Matrix for Incorporation into Phototunable Hybrid-Hydrogel Models of Tissue Fibrosis.
ACS Appl Mater Interfaces. 2023 Mar 29;15(12):15071-15083. doi: 10.1021/acsami.2c18330. Epub 2023 Mar 14.
3
Engineering Hybrid-Hydrogels Comprised of Healthy or Diseased Decellularized Extracellular Matrix to Study Pulmonary Fibrosis.
Cell Mol Bioeng. 2022 Jun 24;15(5):505-519. doi: 10.1007/s12195-022-00726-y. eCollection 2022 Oct.
4
3D Bioprinting Phototunable Hydrogels to Study Fibroblast Activation.
J Vis Exp. 2023 Jun 30(196). doi: 10.3791/65639.
5
Exogenous extracellular matrix proteins decrease cardiac fibroblast activation in stiffening microenvironment through CAPG.
J Mol Cell Cardiol. 2021 Oct;159:105-119. doi: 10.1016/j.yjmcc.2021.06.001. Epub 2021 Jun 10.
6
Liver click dECM hydrogels for engineering hepatic microenvironments.
Acta Biomater. 2024 Sep 1;185:144-160. doi: 10.1016/j.actbio.2024.06.037. Epub 2024 Jul 2.
7
Enzyme-mediated stiffening hydrogels for probing activation of pancreatic stellate cells.
Acta Biomater. 2017 Jan 15;48:258-269. doi: 10.1016/j.actbio.2016.10.027. Epub 2016 Oct 18.
10
Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration.
Tissue Eng Part A. 2022 Feb;28(3-4):161-174. doi: 10.1089/ten.TEA.2021.0093. Epub 2022 Jan 5.

引用本文的文献

2
Light-activated decellularized extracellular matrix-based bioinks for enhanced mechanical integrity.
Mater Today Bio. 2025 May 12;32:101859. doi: 10.1016/j.mtbio.2025.101859. eCollection 2025 Jun.
3
Female Fibroblast Activation Is Estrogen-Mediated in Sex-Specific 3D-Bioprinted Pulmonary Artery Adventitia Models.
ACS Biomater Sci Eng. 2025 May 12;11(5):2935-2945. doi: 10.1021/acsbiomaterials.5c00123. Epub 2025 Apr 26.
4
Tissue-Informed Biomaterial Innovations Advance Pulmonary Regenerative Engineering.
ACS Macro Lett. 2025 Apr 15;14(4):434-447. doi: 10.1021/acsmacrolett.5c00075. Epub 2025 Mar 18.
5
Photo-responsive decellularized small intestine submucosa hydrogels.
Adv Funct Mater. 2024 Sep 4;34(36). doi: 10.1002/adfm.202401952. Epub 2024 Apr 18.
9
Insights into Translational and Biomedical Applications of Hydrogels as Versatile Drug Delivery Systems.
AAPS PharmSciTech. 2024 Jan 22;25(1):17. doi: 10.1208/s12249-024-02731-y.
10
Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine.
Regen Biomater. 2023 Dec 1;11:rbad107. doi: 10.1093/rb/rbad107. eCollection 2024.

本文引用的文献

1
Engineering Hybrid-Hydrogels Comprised of Healthy or Diseased Decellularized Extracellular Matrix to Study Pulmonary Fibrosis.
Cell Mol Bioeng. 2022 Jun 24;15(5):505-519. doi: 10.1007/s12195-022-00726-y. eCollection 2022 Oct.
2
A strategy to quantify myofibroblast activation on a continuous spectrum.
Sci Rep. 2022 Jul 18;12(1):12239. doi: 10.1038/s41598-022-16158-7.
3
Tissue mechanics coevolves with fibrillar matrisomes in healthy and fibrotic tissues.
Matrix Biol. 2022 Aug;111:153-188. doi: 10.1016/j.matbio.2022.06.006. Epub 2022 Jun 25.
5
Effect of pH on the Properties of Hydrogels Cross-Linked via Dynamic Thia-Michael Addition Bonds.
ACS Polym Au. 2022 Apr 13;2(2):129-136. doi: 10.1021/acspolymersau.1c00049. Epub 2021 Dec 28.
6
Kidney tissue elastography and interstitial fibrosis observed in kidney biopsy.
Ren Fail. 2022 Dec;44(1):314-319. doi: 10.1080/0886022X.2022.2035763.
9
Bioengineered Tissue Model of Fibroblast Activation for Modeling Pulmonary Fibrosis.
ACS Biomater Sci Eng. 2019 May 13;5(5):2417-2429. doi: 10.1021/acsbiomaterials.8b01262. Epub 2019 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验