IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2794-2804. doi: 10.1109/TNSRE.2021.3049566. Epub 2021 Jan 28.
Prolonged viewing of 3D content may result in severe fatigue symptoms, giving negative user experience thus hindering the development of 3D industry. For 3D visual fatigue evaluation, previous studies focused on exploring the changes of frequency-domain features in EEG for various fatigue degrees. However, their time-domain features were scarcely investigated. In this study, a modified paradigm with a random disparities order is adopted to evoke the depth-related visual evoked potentials (DVEPs). Then the characteristics of the DVEPs components for various fatigue degrees are compared using one-way repeated-measurement ANOVA. Point-by-point permutation statistics revealed sample points from 100ms to 170ms - including P1 and N1 - in sensors Pz and P4 changed significantly with visual fatigue. More specifically, we find that the amplitudes of P1 and N1 change significantly when visual fatigue increases. Additionally, independent component analysis identify P1 and N1 which originate from posterior cingulate cortex are associated statistically with 3D visual fatigue. Our results indicate there is a significant correlation between 3D visual fatigue and P1 amplitude, as well as N1, of DVEPs on right parietal areas. We believe the characteristics (e.g., amplitude and latency) of identified components may be the indicators of 3D visual fatigue evaluation. Furthermore, we argue that 3D visual fatigue may be associated with the activities decrease of the attention and the processing capacity of disparity.
长时间观看 3D 内容可能会导致严重的疲劳症状,从而给用户带来负面体验,阻碍 3D 产业的发展。对于 3D 视觉疲劳评估,先前的研究侧重于探索 EEG 中各种疲劳程度的频域特征变化。然而,它们的时域特征却很少被研究。在这项研究中,采用了一种具有随机视差顺序的改进范式来诱发深度相关的视觉诱发电位(DVEPs)。然后,使用单向重复测量方差分析比较了不同疲劳程度的 DVEPs 成分的特征。逐点置换统计显示,传感器 Pz 和 P4 中从 100ms 到 170ms 的采样点(包括 P1 和 N1)随着视觉疲劳而显著变化。更具体地说,我们发现随着视觉疲劳的增加,P1 和 N1 的振幅明显变化。此外,独立成分分析确定 P1 和 N1 起源于后扣带回皮层,与 3D 视觉疲劳具有统计学上的相关性。我们的结果表明,3D 视觉疲劳与右顶叶区域 DVEPs 的 P1 振幅以及 N1 之间存在显著相关性。我们认为,所识别的组件的特征(例如振幅和潜伏期)可能是 3D 视觉疲劳评估的指标。此外,我们认为 3D 视觉疲劳可能与注意力和视差处理能力的活动减少有关。