Suppr超能文献

一种用于预测慢性乙型肝炎患者肝组织学的非侵入性模型,该模型适用于丙氨酸氨基转移酶(ALT)< 正常值上限 2 倍的抗病毒治疗决策。

A noninvasive model to predict liver histology for antiviral therapy decision in chronic hepatitis B with alanine aminotransferase < 2 upper limit of normal.

机构信息

Department of Infectious Disease, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.

Graduate School of Clinical Medicine, Bengbu Medical College, BengbuAnhui, 233000, China.

出版信息

BMC Gastroenterol. 2021 Jan 6;21(1):4. doi: 10.1186/s12876-020-01576-6.

Abstract

BACKGROUND

At present, most assessments of liver fibrosis staging mainly focus on non-invasive diagnostic methods. This study aims to construct a noninvasive model to predict liver histology for antiviral therapy in chronic hepatitis B (CHB) with alanine aminotransferase (ALT) < 2 times upper limit of normal (ULN).

METHODS

We retrospectively analyzed 577 patients with CHB who received liver biopsy and whose ALT was less than 2 ULN. Then they were randomly divided into a training group and a validation group. Through logistic regression analysis, a novel predictive model was constructed in the training group to predict significant changes in liver histology [necro-inflammatory activity grade (G) ≥ 2 or fibrosis stage (S) ≥ 2] and then validated in the validation group.

RESULTS

If liver biopsy showed moderate or severe inflammation or significant fibrosis, antiviral treatment was recommended. Aspartate aminotransferase (AST), anti-hepatitis B virus core antibody (anti-HBC) and glutamine transpeptidase (GGT) were identified as independent predictors for antiviral therapy, with area under the ROC curve (AUROC) of 0.649, 0.647 and 0.616, respectively. Our novel model index, which combined AST, anti- HBC and GGT with AUROC of 0.700 and 0.742 in training set and validation set.

CONCLUSIONS

This study established a noninvasive model to predict liver histology for antiviral treatment decision in patients with CHB with ALT < 2 ULN, which can reduce the clinical needs of liver biopsy.

摘要

背景

目前,大多数肝纤维化分期的评估主要集中在非侵入性诊断方法上。本研究旨在构建一种非侵入性模型,以预测丙型肝炎病毒(HBV)慢性乙型肝炎(CHB)患者丙氨酸氨基转移酶(ALT)< 2 倍正常值上限(ULN)时抗病毒治疗的肝组织学。

方法

我们回顾性分析了 577 例接受肝活检且 ALT 小于 2 ULN 的 CHB 患者。然后,他们被随机分为训练组和验证组。通过逻辑回归分析,在训练组中构建了一种新的预测模型,以预测肝组织学显著变化(G≥2 或 S≥2),然后在验证组中进行验证。

结果

如果肝活检显示中度或重度炎症或显著纤维化,则建议进行抗病毒治疗。天冬氨酸氨基转移酶(AST)、抗乙型肝炎病毒核心抗体(抗-HBC)和谷氨酰胺转肽酶(GGT)被确定为抗病毒治疗的独立预测因素,其 AUC 分别为 0.649、0.647 和 0.616。我们的新型模型指数,将 AST、抗-HBC 和 GGT 与 AUC 结合,在训练集和验证集中的 AUC 分别为 0.700 和 0.742。

结论

本研究建立了一种非侵入性模型,以预测 ALT< 2 ULN 的 CHB 患者抗病毒治疗决策的肝组织学,可减少临床对肝活检的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fef/7788863/77cc7070c4a5/12876_2020_1576_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验