文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于五个肿瘤免疫微环境相关基因预测肝细胞癌免疫治疗结果的模型

Model based on five tumour immune microenvironment-related genes for predicting hepatocellular carcinoma immunotherapy outcomes.

作者信息

Gu Xinyu, Guan Jun, Xu Jia, Zheng Qiuxian, Chen Chao, Yang Qin, Huang Chunhong, Wang Gang, Zhou Haibo, Chen Zhi, Zhu Haihong

机构信息

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.

出版信息

J Transl Med. 2021 Jan 6;19(1):26. doi: 10.1186/s12967-020-02691-4.


DOI:10.1186/s12967-020-02691-4
PMID:33407546
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7788940/
Abstract

BACKGROUND: Although the tumour immune microenvironment is known to significantly influence immunotherapy outcomes, its association with changes in gene expression patterns in hepatocellular carcinoma (HCC) during immunotherapy and its effect on prognosis have not been clarified. METHODS: A total of 365 HCC samples from The Cancer Genome Atlas liver hepatocellular carcinoma (TCGA-LIHC) dataset were stratified into training datasets and verification datasets. In the training datasets, immune-related genes were analysed through univariate Cox regression analyses and least absolute shrinkage and selection operator (LASSO)-Cox analyses to build a prognostic model. The TCGA-LIHC, GSE14520, and Imvigor210 cohorts were subjected to time-dependent receiver operating characteristic (ROC) and Kaplan-Meier survival curve analyses to verify the reliability of the developed model. Finally, single-sample gene set enrichment analysis (ssGSEA) was used to study the underlying molecular mechanisms. RESULTS: Five immune-related genes (LDHA, PPAT, BFSP1, NR0B1, and PFKFB4) were identified and used to establish the prognostic model for patient response to HCC treatment. ROC curve analysis of the TCGA (training and validation sets) and GSE14520 cohorts confirmed the predictive ability of the five-gene-based model (AUC > 0.6). In addition, ROC and Kaplan-Meier analyses indicated that the model could stratify patients into a low-risk and a high-risk group, wherein the high-risk group exhibited worse prognosis and was less sensitive to immunotherapy than the low-risk group. Functional enrichment analysis predicted potential associations of the five genes with several metabolic processes and oncological signatures. CONCLUSIONS: We established a novel five-gene-based prognostic model based on the tumour immune microenvironment that can predict immunotherapy efficacy in HCC patients.

摘要

背景:尽管已知肿瘤免疫微环境会显著影响免疫治疗结果,但在免疫治疗期间其与肝细胞癌(HCC)基因表达模式变化的关联及其对预后的影响尚未明确。 方法:来自癌症基因组图谱肝细胞癌(TCGA-LIHC)数据集的总共365个HCC样本被分层为训练数据集和验证数据集。在训练数据集中,通过单变量Cox回归分析和最小绝对收缩和选择算子(LASSO)-Cox分析来分析免疫相关基因,以建立预后模型。对TCGA-LIHC、GSE14520和Imvigor210队列进行时间依赖性受试者操作特征(ROC)和Kaplan-Meier生存曲线分析,以验证所开发模型的可靠性。最后,使用单样本基因集富集分析(ssGSEA)来研究潜在的分子机制。 结果:鉴定出五个免疫相关基因(LDHA、PPAT、BFSP1、NR0B1和PFKFB4),并用于建立患者对HCC治疗反应的预后模型。对TCGA(训练集和验证集)和GSE14520队列的ROC曲线分析证实了基于五基因模型的预测能力(AUC>0.6)。此外,ROC和Kaplan-Meier分析表明,该模型可将患者分为低风险组和高风险组,其中高风险组的预后较差,对免疫治疗的敏感性低于低风险组。功能富集分析预测了这五个基因与几种代谢过程和肿瘤学特征的潜在关联。 结论:我们基于肿瘤免疫微环境建立了一种新型的基于五基因的预后模型,该模型可以预测HCC患者的免疫治疗疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded0/7788940/080ef977c10f/12967_2020_2691_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded0/7788940/2a6bb2819afe/12967_2020_2691_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded0/7788940/3459f5631453/12967_2020_2691_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded0/7788940/9c138979c53c/12967_2020_2691_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded0/7788940/32d5e7cf5e63/12967_2020_2691_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded0/7788940/3b9b75bce781/12967_2020_2691_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded0/7788940/d5d4d75216a4/12967_2020_2691_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded0/7788940/080ef977c10f/12967_2020_2691_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded0/7788940/2a6bb2819afe/12967_2020_2691_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded0/7788940/3459f5631453/12967_2020_2691_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded0/7788940/9c138979c53c/12967_2020_2691_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded0/7788940/32d5e7cf5e63/12967_2020_2691_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded0/7788940/3b9b75bce781/12967_2020_2691_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded0/7788940/d5d4d75216a4/12967_2020_2691_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded0/7788940/080ef977c10f/12967_2020_2691_Fig7_HTML.jpg

相似文献

[1]
Model based on five tumour immune microenvironment-related genes for predicting hepatocellular carcinoma immunotherapy outcomes.

J Transl Med. 2021-1-6

[2]
An immune-related gene signature for predicting survival and immunotherapy efficacy in hepatocellular carcinoma.

Cancer Immunol Immunother. 2021-4

[3]
Hypoxic Characteristic in the Immunosuppressive Microenvironment of Hepatocellular Carcinoma.

Front Immunol. 2021

[4]
Identification of Prognostic Genes in the Tumor Microenvironment of Hepatocellular Carcinoma.

Front Immunol. 2021

[5]
Identification of immune infiltration-related genes as prognostic indicators for hepatocellular carcinoma.

BMC Cancer. 2022-5-5

[6]
Identification and Validation of a Novel Six-Gene Expression Signature for Predicting Hepatocellular Carcinoma Prognosis.

Front Immunol. 2021

[7]
Predictive value of a stemness-based classifier for prognosis and immunotherapy response of hepatocellular carcinoma based on bioinformatics and machine-learning strategies.

Front Immunol. 2024

[8]
The identification of N6-methyladenosine-related miRNAs predictive of hepatocellular carcinoma prognosis and immunotherapy efficacy.

Cancer Biomark. 2023

[9]
Construction and Validation of a Prognostic Gene-Based Model for Overall Survival Prediction in Hepatocellular Carcinoma Using an Integrated Statistical and Bioinformatic Approach.

Int J Mol Sci. 2021-2-5

[10]
Cuproptosis-Related Signature Predicts the Prognosis, Tumor Microenvironment, and Drug Sensitivity of Hepatocellular Carcinoma.

J Immunol Res. 2022

引用本文的文献

[1]
Lymphocyte subset-based non-invasive biomarker predicts immunochemotherapy efficacy in EGFR-TKI-pretreated EGFR-mutated NSCLC.

iScience. 2025-7-25

[2]
Development of a PPP1R14B-associated immune prognostic model for hepatocellular carcinoma.

Eur J Med Res. 2025-8-6

[3]
The evolving landscape of biomarkers for systemic therapy in advanced hepatocellular carcinoma.

Biomark Res. 2025-4-12

[4]
M6A-modified BFSP1 induces aerobic glycolysis to promote liver cancer growth and metastasis through upregulating tropomodulin 4.

Mol Biomed. 2025-3-18

[5]
Development and validation of an Immune-related Gene-based model for predicting prognosis and immunotherapy outcomes in hepatocellular carcinoma patients.

Sci Rep. 2025-2-24

[6]
FOXM1 Upregulates O-GlcNAcylation Level Via The Hexosamine Biosynthesis Pathway to Promote Angiogenesis in Hepatocellular Carcinoma.

Cell Biochem Biophys. 2024-9

[7]
Crosstalk of non-apoptotic RCD panel in hepatocellular carcinoma reveals the prognostic and therapeutic optimization.

iScience. 2024-5-6

[8]
Analysis and Validation of Tyrosine Metabolism-related Prognostic Features for Liver Hepatocellular Carcinoma Therapy.

Curr Med Chem. 2025

[9]
Signature construction and molecular subtype identification based on liver-specific genes for prediction of prognosis, immune activity, and anti-cancer drug sensitivity in hepatocellular carcinoma.

Cancer Cell Int. 2024-2-19

[10]
Current state and challenges of emerging biomarkers for immunotherapy in hepatocellular carcinoma (Review).

Exp Ther Med. 2023-11-3

本文引用的文献

[1]
Identification and Validation of Novel Biomarkers for Diagnosis and Prognosis of Hepatocellular Carcinoma.

Front Oncol. 2020-9-25

[2]
Expression levels of lncRNAs are prognostic for hepatocellular carcinoma overall survival.

Am J Transl Res. 2020-5-15

[3]
PFKFB4 is critical for the survival of acute monocytic leukemia cells.

Biochem Biophys Res Commun. 2020-4-13

[4]
ImmuCellAI: A Unique Method for Comprehensive T-Cell Subsets Abundance Prediction and its Application in Cancer Immunotherapy.

Adv Sci (Weinh). 2020-2-11

[5]
Role of mC-related regulatory genes in the diagnosis and prognosis of hepatocellular carcinoma.

Am J Transl Res. 2020-3-15

[6]
Integrative Analysis of Multi-omics Data Identified EGFR and PTGS2 as Key Nodes in a Gene Regulatory Network Related to Immune Phenotypes in Head and Neck Cancer.

Clin Cancer Res. 2020-7-15

[7]
Dissecting the spatial heterogeneity of different immune cell subsets in non-small cell lung cancer.

Pathol Res Pract. 2020-5

[8]
Prognostic role of tumor mutation burden in hepatocellular carcinoma after radical hepatectomy.

J Surg Oncol. 2020-1-29

[9]
Prediction of hepatocellular carcinoma prognosis based on expression of an immune-related gene set.

Aging (Albany NY). 2020-1-12

[10]
PFKFB4 negatively regulated the expression of histone acetyltransferase GCN5 to mediate the tumorigenesis of thyroid cancer.

Dev Growth Differ. 2020-1-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索