Suppr超能文献

多组学数据的综合分析确定 EGFR 和 PTGS2 为与头颈部癌症免疫表型相关的基因调控网络中的关键节点。

Integrative Analysis of Multi-omics Data Identified EGFR and PTGS2 as Key Nodes in a Gene Regulatory Network Related to Immune Phenotypes in Head and Neck Cancer.

机构信息

Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany.

Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.

出版信息

Clin Cancer Res. 2020 Jul 15;26(14):3616-3628. doi: 10.1158/1078-0432.CCR-19-3997. Epub 2020 Mar 11.

Abstract

PURPOSE

Malignant progression exhibits a tightly orchestrated balance between immune effector response and tolerance. However, underlying molecular principles that drive the establishment and maintenance of the tumor immune phenotype remain to be elucidated.

EXPERIMENTAL DESIGN

We trained a novel molecular classifier based on immune cell subsets related to programmed death-ligand 1 (PD-L1) and interferon γ (IFNγ) expression, which revealed distinct subgroups with higher (cluster A) or lower (subcluster B3) cytotoxic immune phenotypes. Integrative analysis of multi-omics data was conducted to identify differences in genetic and epigenetic landscapes as well as their impact on differentially expressed genes (DEG) among immune phenotypes. A prognostic gene signature for immune checkpoint inhibition (ICI) was established by a least absolute shrinkage and selection operator (LASSO)-Cox regression model.

RESULTS

Mutational landscape analyses unraveled a higher frequency of somatic mutations in subcluster A1, while subcluster B3 exhibited a characteristic pattern of copy-number alterations affecting chemokine signaling and immune effector response. The integrative multi-omics approach identified and as key nodes in a gene regulatory network related to the immune phenotype, and several DEGs related to the immune phenotypes were affected by EGFR inhibition in tumor cell lines. Finally, we established a prognostic gene signature by a LASSO-Cox regression model based on DEGs between nonprogressive disease and progressive disease subgroups for ICI.

CONCLUSIONS

Our data highlight a complex interplay between genetic and epigenetic events in the establishment of the tumor immune phenotype and provide compelling experimental evidence that a patient with squamous cell carcinoma of the head and neck at higher risk for ICI treatment failure might benefit from a combination with EGFR inhibition.

摘要

目的

恶性进展表现为免疫效应反应与耐受之间的紧密协调平衡。然而,驱动肿瘤免疫表型建立和维持的潜在分子原理仍有待阐明。

实验设计

我们基于与程序性死亡配体 1(PD-L1)和干扰素 γ(IFNγ)表达相关的免疫细胞亚群,训练了一种新的分子分类器,该分类器揭示了具有更高(簇 A)或更低(亚群 B3)细胞毒性免疫表型的不同亚群。对多组学数据进行综合分析,以识别遗传和表观遗传景观的差异,以及它们对免疫表型中差异表达基因(DEG)的影响。通过最小绝对收缩和选择算子(LASSO)-Cox 回归模型建立了用于免疫检查点抑制(ICI)的预后基因特征。

结果

突变景观分析揭示了亚群 A1 中体细胞突变的频率更高,而亚群 B3 则表现出影响趋化因子信号和免疫效应反应的特征性拷贝数改变模式。综合多组学方法鉴定了和作为与免疫表型相关的基因调控网络中的关键节点,并且几个与免疫表型相关的 DEG 受到肿瘤细胞系中 EGFR 抑制的影响。最后,我们基于非进展性疾病和进展性疾病亚组之间的 DEG,通过 LASSO-Cox 回归模型建立了用于 ICI 的预后基因特征。

结论

我们的数据突出了遗传和表观遗传事件在肿瘤免疫表型建立中的复杂相互作用,并提供了有力的实验证据,表明头颈部鳞状细胞癌患者如果 ICI 治疗失败的风险较高,可能会受益于与 EGFR 抑制的联合治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验