Sasaki Kengo, Sasaki Daisuke, Tsuge Yota, Morita Masahiko, Kondo Akihiko
Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
Biotechnol Biofuels. 2021 Jan 6;14(1):7. doi: 10.1186/s13068-020-01866-x.
It is desirable to improve the anaerobic digestion processes of recalcitrant materials, such as cellulose. Enhancement of methane (CH) production from organic molecules was previously accomplished through coupling a bioelectrochemical system (BES); however, scaling-up BES-based production is difficult. Here, we developed a two-stage process consisting of a BES using low-cost and low-reactive carbon sheets as the cathode and anode, and a fixed film reactor (FFR) containing conductive material, i.e., carbon fiber textiles (CFTs) (:BES → FFR). By controlling the cathodic current at 2.7 μA/cm without abiotic H production, the three-electrode BES system was operated to mimic a microbial electrolysis cell.
The thermophilic BES (inlet pH: 6.1) and FFR (inlet pH: 7.5) were operated using hydraulic retention times (HRTs) of 2.5 and 4.2 days, respectively, corresponding to a cellulose load of 3555.6 mg-carbon (C)/(L day). The BES → FFR process achieved a higher CH yield (37.5%) with 52.8 vol% CH in the product gas compared to the non-bioelectrochemical system (NBES) → FFR process, which showed a CH yield of 22.1% with 46.8 vol% CH. The CH production rate (67.5 mM/day) obtained with the BER → FFR process was much higher than that obtained using electrochemical methanogenesis (0.27 mM/day). Application of the electrochemical system or CFTs improved the yields of CH with the NBES → FFR or BES → non-fixed film reactor process, respectively. Meta 16S rRNA sequencing revealed that putative cellulolytic bacteria (identified as Clostridium species) were present in the BES and NBES, and followed (BES→ and NBES→) FFR. Notably, H-consuming methanogens, Methanobacterium sp. and Methanosarcina sp., showed increased relative abundances in the suspended fraction and attached fraction of (BES→) FFR, respectively, compared to that of (NBES→) FFR, although these methanogens were observed at trace levels in the BES and NBES.
These results indicate that bioelectrochemical preprocessing at a low current effectively induces interspecies H transfer in the FFR with conductive material. Sufficient electrochemical preprocessing was observed using a relatively short HRT. This type of two-stage process, BES → FFR, is useful for stabilization and improvement of the biogas (CH) production from cellulosic material, and our results imply that the two-stage system developed here may be useful with other recalcitrant materials.
改进诸如纤维素等难降解物质的厌氧消化过程是很有必要的。此前通过耦合生物电化学系统(BES)实现了从有机分子中提高甲烷(CH)产量;然而,扩大基于BES的生产规模很困难。在此,我们开发了一种两阶段工艺,包括一个使用低成本、低反应性碳片作为阴极和阳极的BES,以及一个包含导电材料即碳纤维织物(CFTs)的固定膜反应器(FFR)(:BES→FFR)。通过在无abiotic H产生的情况下将阴极电流控制在2.7 μA/cm²,操作三电极BES系统以模拟微生物电解池。
嗜热BES(进水pH值:6.1)和FFR(进水pH值:7.5)分别采用2.5天和4.2天的水力停留时间(HRTs)运行,对应纤维素负荷为3555.6 mg-碳(C)/(L·天)。与非生物电化学系统(NBES)→FFR工艺相比,BES→FFR工艺实现了更高的CH产量(37.5%),产物气中CH含量为52.8 vol%,而NBES→FFR工艺的CH产量为22.1%,CH含量为46.8 vol%。BES→FFR工艺获得的CH生产率(67.5 mM/天)远高于电化学产甲烷法(0.27 mM/天)。电化学系统或CFTs的应用分别提高了NBES→FFR或BES→非固定膜反应器工艺的CH产量。Meta 16S rRNA测序表明,假定的纤维素分解菌(鉴定为梭菌属)存在于BES和NBES中,并在(BES→和NBES→)FFR中出现。值得注意的是,与(NBES→)FFR相比,消耗H的产甲烷菌,即嗜甲基产甲烷杆菌和甲烷八叠球菌,在(BES→)FFR的悬浮部分和附着部分中的相对丰度分别增加,尽管这些产甲烷菌在BES和NBES中仅以痕量水平被观察到。
这些结果表明,低电流下的生物电化学预处理有效地诱导了FFR中与导电材料的种间H转移。使用相对较短的HRT观察到了充分的电化学预处理。这种BES→FFR类型的两阶段工艺对于稳定和提高纤维素材料的沼气(CH)产量很有用,我们的结果表明这里开发的两阶段系统可能对其他难降解材料也有用。