Suppr超能文献

CO 吸收和 H 介导的电甲烷生成的相互作用触发有效的沼气升级。

Mutual effects of CO absorption and H-mediated electromethanogenesis triggering efficient biogas upgrading.

机构信息

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China.

Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, PR China.

出版信息

Sci Total Environ. 2022 Apr 20;818:151732. doi: 10.1016/j.scitotenv.2021.151732. Epub 2021 Nov 23.

Abstract

Anaerobic digestion coupled with bioelectrochemical system (BES) is a promising approach for biogas upgrading with low energy input. However, the alkalinity generation from electromethanogenesis is invariably ignored which could serve as a potential assistant for CO removal through the transformation into dissolved inorganic carbon (DIC). Herein, a novel bioelectrochemical CO conversion in the methanogenic BES was proposed based on active CO capture and in-situ microbial utilization. It was found that the BES using a stainless steel/carbon felt hybrid biocathode (BES-SSCF reactor) achieved a CH yield of 0.33 ± 0.03 LCH/gCOD and increased CH production rate by 28.3% of BES-CF reactor at 1.0 V applied voltage. As the experiment progressed, CH content increased to 93.1% and CO content in the upgraded biogas maintained at below 3%. The continuous proton consumption from H evolution reaction in the hybrid biocathode was capable of creating a slightly alkaline condition in the BES-SSCF reactor and thereby the CO capture as bicarbonate was enhanced through endogenous alkalinity absorption. Microbial community analysis revealed that significant enrichment of Methanobacterium and Methanosarcina at the BES-SSCF cathodic biofilm was favorable for bicarbonate reduction into CH via establishment of H-mediated electron transfer. Consequently, the remained CO and DIC only accounted for 12% of total carbon in the BES-SSCF reactor and the high conversion rate of CO to CH (82.3%) was achieved. These results unraveled an innovative CO utilization mechanism integrating CO absorption with H-mediated electromethanogenesis.

摘要

厌氧消化与生物电化学系统(BES)相结合是一种很有前途的沼气升级方法,只需低能耗。然而,电甲烷生成过程中的碱度生成通常被忽视,这可以作为通过转化为溶解无机碳(DIC)去除 CO 的潜在辅助手段。本文提出了一种基于活性 CO 捕集和原位微生物利用的新型产甲烷 BES 中的生物电化学 CO 转化方法。结果表明,采用不锈钢/碳纤维毡复合生物阴极(BES-SSCF 反应器)的 BES 在 1.0 V 外加电压下实现了 0.33±0.03 LCH/gCOD 的 CH 产率,比 BES-CF 反应器提高了 28.3%。随着实验的进行,CH 含量增加到 93.1%,升级后的沼气中 CO 含量保持在 3%以下。在复合生物阴极中,H 演化反应的连续质子消耗能够在 BES-SSCF 反应器中产生略微碱性的条件,从而通过内源性碱度吸收增强了 CO 作为碳酸氢盐的捕集。微生物群落分析表明,在 BES-SSCF 阴极生物膜中,Methanobacterium 和 Methanosarcina 的丰度显著增加,有利于通过 H 介导的电子转移将碳酸氢盐还原为 CH。因此,BES-SSCF 反应器中剩余的 CO 和 DIC 仅占总碳的 12%,实现了 CO 向 CH 的高转化率(82.3%)。这些结果揭示了一种创新的 CO 利用机制,将 CO 吸收与 H 介导的电甲烷生成相结合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验