Suppr超能文献

乳腺癌分子分型对年轻与老年女性患者局部区域复发率的影响

Impact of Molecular Profiling of Breast Cancer on the Rate of Locoregional Recurrence in Young Versus Old Female Patients.

作者信息

Soliman Hesham, Abouelazayem Mohamed, Elkorety Mohamed, Nouh Mohamed Akram, Touny Eman M, Abdalla Hassan M

机构信息

Department of General Surgery, Kings College NHS Foundation Trust, London, GBR.

Department of Surgical Oncology, National Cancer Institute, Cairo University, Cairo, EGY.

出版信息

Cureus. 2021 Jan 3;13(1):e12438. doi: 10.7759/cureus.12438.

Abstract

Background Breast cancer (BC) is diverse regarding its natural history and treatment responses. The traditional histopathological classification is unable to confine this diverse clinical heterogeneity. Classically, prognosis and treatment response are influenced by factors including histological grade, lymph node status, and tumour size. Recently, research has diverted from histological classification towards molecular classification. We aim to analyse the locoregional recurrence of breast cancer incidence following surgery across the different molecular subtypes as well as relation to age. Materials and methods Female patients diagnosed with a locoregional recurrence of breast carcinoma in 2012-2014 were identified from our centre histology department. We only included stage I-III patients who were previously treated with surgery achieving negative surgical margins and later developed locoregional recurrence during our study period. These patients were subdivided by age into old (≥40 years old) and young (<40 years old) groups according to their initial diagnosis age. Furthermore, they were categorised according to the molecular subtype of their primary tumour. Results Our study included 184 patients (124 designated to the old age group, 60 to the young age group). In the young group, recurrence occurred after a mean of 4.3 years and the range was one to 23 years, while in the old group, the mean was 3.8 years, and the range was one to 14 years. The most primary cancer subtype recorded was triple-negative (41.85%): 50 old patients and 27 young. Next was the Her-2/neu enriched subtype (27.72%): 35 old patients and 16 young, following this was luminal A subtype (21.19%): 27 old and 12 young. Last was the luminal B subtype (9.24%): 12 old patients and five young. Conclusions To conclude, in our series, the most common molecular subtype found in the recurrent cases was the luminal negative subtypes, with a relatively similar pattern across both age groups. The results of this study can be used as a basis for large prospective studies in our centre to further analyse the effect of molecular subtyping on the recurrence rates of BC.

摘要

背景

乳腺癌(BC)在其自然病史和治疗反应方面具有多样性。传统的组织病理学分类无法涵盖这种多样的临床异质性。经典地,预后和治疗反应受组织学分级、淋巴结状态和肿瘤大小等因素影响。最近,研究已从组织学分类转向分子分类。我们旨在分析不同分子亚型乳腺癌手术后局部区域复发的发生率以及与年龄的关系。

材料与方法

从我们中心的组织学部门确定2012 - 2014年被诊断为乳腺癌局部区域复发的女性患者。我们仅纳入I - III期患者,这些患者先前接受了手术且手术切缘阴性,在我们的研究期间后来出现局部区域复发。这些患者根据初始诊断年龄按年龄分为老年(≥40岁)和青年(<40岁)组。此外,根据其原发肿瘤的分子亚型进行分类。

结果

我们的研究包括184名患者(124名归入老年组,60名归入青年组)。在青年组中,复发平均发生在4.3年后,范围为1至23年,而在老年组中,平均为3.8年,范围为1至14年。记录的最主要癌症亚型是三阴性(41.85%):50名老年患者和27名青年患者。其次是Her-2/neu富集亚型(27.72%):35名老年患者和16名青年患者,接着是腔面A型(21.19%):27名老年患者和12名青年患者。最后是腔面B型(9.24%):12名老年患者和5名青年患者。

结论

总之,在我们的系列研究中,复发病例中最常见的分子亚型是腔面阴性亚型,两个年龄组的模式相对相似。本研究结果可作为我们中心大型前瞻性研究的基础,以进一步分析分子分型对乳腺癌复发率的影响。

相似文献

4
Breast cancer recurrence according to molecular subtype.根据分子亚型的乳腺癌复发情况。
Asian Pac J Cancer Prev. 2014;15(14):5539-44. doi: 10.7314/apjcp.2014.15.14.5539.

本文引用的文献

4
Breast cancer statistics, 2013.乳腺癌统计数据,2013 年。
CA Cancer J Clin. 2014 Jan-Feb;64(1):52-62. doi: 10.3322/caac.21203. Epub 2013 Oct 1.
6
Breast cancer subtypes and the risk of local and regional relapse.乳腺癌亚型与局部和区域复发的风险。
J Clin Oncol. 2010 Apr 1;28(10):1684-91. doi: 10.1200/JCO.2009.24.9284. Epub 2010 Mar 1.
8
Qualitative age interactions in breast cancer studies: mind the gap.乳腺癌研究中的定性年龄相互作用:注意差距。
J Clin Oncol. 2009 Nov 10;27(32):5308-11. doi: 10.1200/JCO.2009.22.9450. Epub 2009 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验