Balamurugan Chandran, Song Seungjin, Jo Hyeonjeong, Seo Junhyeok
Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
ACS Appl Mater Interfaces. 2021 Jan 20;13(2):2788-2798. doi: 10.1021/acsami.0c21169. Epub 2021 Jan 7.
Bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are necessary in the renewable energy systems. However, the kinetically slow and large energy-demanding procedures of oxygen electrocatalysis make the preparation of bifunctional catalysts difficult. In this work, we report a novel hierarchical GdFeO perovskite oxide of a spherelike nanostructure and surface modification with the group X heterometal oxides. The nanostructured GdFeO layer behaved as a bifunctional electrocatalyst in the oxygen electrocatalysis of OER and ORR. Moreover, the surface decoration with catalytically active PtO + Ni/NiO nanoparticles enhanced the electrocatalytic performances substantially. Incorporation of mesoporous PtO + Ni/NiO nanoparticles into the porous GdFeO nanostructure enlarged the electrochemically active surface area and provided the interconnected nanostructures to facilitate the OER/ORR. The nanostructures were visualized by scanning electron microscopy and transmission electron microscopy images, and the surface area and pore size of nanoparticles were analyzed from N adsorption/desorption isotherms. Tafel analysis indicates that surface modification effectively improves the kinetics of oxygen reactions and accordingly increases the electrocatalytic efficiency. Finally, the 2 wt % PtO + NiO|GdFeO ( = 0, 1, and 2) electrode achieved the enhanced OER performance with an overpotential of 0.19 V at 10 mA/cm in an alkaline solution and a high turnover frequency of 0.28 s at η = 0.5 V. Furthermore, the ORR activity is observed with an onset potential of 0.80 V and a half-wave potential () of 0.40 V versus reversible hydrogen electrode.
用于析氧反应(OER)和氧还原反应(ORR)的双功能电催化剂在可再生能源系统中是必不可少的。然而,氧电催化过程中动力学缓慢且能量需求大,这使得双功能催化剂的制备变得困难。在这项工作中,我们报道了一种新型的具有球形纳米结构的分级GdFeO钙钛矿氧化物,并通过X族异金属氧化物进行表面改性。纳米结构的GdFeO层在OER和ORR的氧电催化中表现为双功能电催化剂。此外,用具有催化活性的PtO + Ni/NiO纳米颗粒进行表面修饰,显著提高了电催化性能。将介孔PtO + Ni/NiO纳米颗粒掺入多孔GdFeO纳米结构中,扩大了电化学活性表面积,并提供了相互连接的纳米结构以促进OER/ORR。通过扫描电子显微镜和透射电子显微镜图像对纳米结构进行了可视化,并根据N吸附/脱附等温线分析了纳米颗粒的表面积和孔径。塔菲尔分析表明,表面改性有效地改善了氧反应的动力学,从而提高了电催化效率。最后,2 wt% PtO + NiO|GdFeO( = 0、1和2)电极在碱性溶液中10 mA/cm²时过电位为0.19 V,在η = 0.5 V时具有0.28 s⁻¹的高周转频率,实现了增强的OER性能。此外,观察到ORR活性,相对于可逆氢电极,起始电位为0.80 V,半波电位( )为0.40 V。