Department of Chemistry, University of Connecticut , U-3060, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.
Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut , U-3136, 97 North Eagleville Road, Storrs, Connecticut 06269, United States.
ACS Appl Mater Interfaces. 2016 Aug 17;8(32):20802-13. doi: 10.1021/acsami.6b06103. Epub 2016 Aug 5.
Efficient bifunctional catalysts for electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are highly desirable due to their wide applications in fuel cells and rechargeable metal air batteries. However, the development of nonprecious metal catalysts with comparable activities to noble metals is still challenging. Here we report a one-step wet-chemical synthesis of Ni-/Mn-promoted mesoporous cobalt oxides through an inverse micelle process. Various characterization techniques including powder X-ray diffraction (PXRD), N2 sorption, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) confirm the successful incorporation of Ni and Mn leading to the formation of Co-Ni(Mn)-O solid solutions with retained mesoporosity. Among these catalysts, cobalt oxide with 5% Ni doping demonstrates promising activities for both ORR and OER, with an overpotential of 399 mV for ORR (at -3 mA/cm(2)) and 381 mV (at 10 mA/cm(2)) for OER. Furthermore, it shows better durability than precious metals featuring little activity decay throughout 24 h continuous operation. Analyses of cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), Raman, and O2-temperature-programmed desorption (O2-TPD) reveal that redox activity of Co(3+) to Co(4+) is crucial for OER performance, while the population of surface oxygen vacancies and surface area determine ORR activities. The comprehensive investigation of the intrinsic active sites for ORR and OER by correlating different physicochemical properties to the electrochemical activities is believed to provide important insight toward the rational design of high-performance electrocatalysts for ORR and OER reactions.
由于在燃料电池和可充电金属空气电池中的广泛应用,高效的电化学氧还原反应 (ORR) 和氧析出反应 (OER) 双功能催化剂是非常理想的。然而,开发与贵金属活性相当的非贵金属催化剂仍然具有挑战性。在这里,我们通过反胶束过程报告了一种一步湿化学合成 Ni-/Mn 促进的介孔钴氧化物的方法。各种表征技术,包括粉末 X 射线衍射 (PXRD)、N2 吸附、透射电子显微镜 (TEM) 和扫描电子显微镜 (SEM),证实了 Ni 和 Mn 的成功掺入导致了 Co-Ni(Mn)-O 固溶体的形成,同时保留了介孔。在这些催化剂中,掺有 5%Ni 的钴氧化物对 ORR 和 OER 都表现出了有前景的活性,ORR 的过电势为 399 mV(在 -3 mA/cm(2)),OER 的过电势为 381 mV(在 10 mA/cm(2))。此外,它的耐久性优于贵金属,在 24 小时连续运行过程中几乎没有活性衰减。循环伏安 (CV)、X 射线光电子能谱 (XPS)、拉曼和 O2-程序升温脱附 (O2-TPD) 的分析表明,Co(3+)到 Co(4+)的氧化还原活性对于 OER 性能至关重要,而表面氧空位的数量和表面积决定了 ORR 活性。通过将不同的物理化学性质与电化学活性相关联,对 ORR 和 OER 反应的本征活性位点进行综合研究,有望为 ORR 和 OER 反应的高性能电催化剂的合理设计提供重要的见解。
ACS Appl Mater Interfaces. 2017-6-28
ACS Appl Mater Interfaces. 2019-6-19
ACS Appl Mater Interfaces. 2022-12-21
ACS Appl Mater Interfaces. 2017-6-15
Nanomaterials (Basel). 2024-10-16