Bastianello Alvise, De Luca Andrea, Doyon Benjamin, De Nardis Jacopo
Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
Laboratoire de Physique Théorique et Modélisation (CNRS UMR 8089), Université de Cergy-Pontoise, F-95302 Cergy-Pontoise, France.
Phys Rev Lett. 2020 Dec 11;125(24):240604. doi: 10.1103/PhysRevLett.125.240604.
For a decade the fate of a one-dimensional gas of interacting bosons in an external trapping potential remained mysterious. We here show that whenever the underlying integrability of the gas is broken by the presence of the external potential, the inevitable diffusive rearrangements between the quasiparticles, quantified by the diffusion constants of the gas, eventually lead the system to thermalize at late times. We show that the full thermalizing dynamics can be described by the generalized hydrodynamics with diffusion and force terms, and we compare these predictions to numerical simulations. Finally, we provide an explanation for the slow thermalization rates observed in numerical and experimental settings: the hydrodynamics of integrable models is characterized by a continuity of modes, which can have arbitrarily small diffusion coefficients. As a consequence, the approach to thermalization can display prethermal plateau and relaxation dynamics with long polynomial finite-time corrections.
十年来,处于外部捕获势中的一维相互作用玻色子气体的命运一直成谜。我们在此表明,只要气体的基本可积性因外部势的存在而被打破,由气体扩散常数量化的准粒子之间不可避免的扩散重排最终会使系统在长时间后热化。我们表明,完整的热化动力学可以用具有扩散项和力项的广义流体动力学来描述,并将这些预测与数值模拟进行比较。最后,我们对在数值和实验设置中观察到的缓慢热化速率给出了解释:可积模型的流体动力学具有模式连续性的特征,其扩散系数可以任意小。因此,热化过程可能会显示出预热平台和具有长多项式有限时间修正的弛豫动力学。