Suppr超能文献

2020 年 1 月至 4 月期间意大利各市级行政单位超额死亡率分析。

A municipality-level analysis of excess mortality in Italy in the period January-April 2020.

机构信息

Department of Statistics, Computer Science, Applications G. Parenti, University of Florence, Florence (Italy);

Department of Economics, University of Genoa, Genoa (Italy).

出版信息

Epidemiol Prev. 2020 Sep-Dec;44(5-6 Suppl 2):297-306. doi: 10.19191/EP20.5-6.S2.130.

Abstract

BACKGROUND

the first confirmed cases of COVID-19 in WHO European Region was reported at the end of January 2020 and, from that moment, the epidemic has been speeding up and rapidly spreading across Europe. The health, social, and economic consequences of the pandemic are difficult to evaluate, since there are many scientific uncertainties and unknowns.

OBJECTIVES

the main focus of this paper is on statistical methods for profiling municipalities by excess mortality, directly or indirectly caused by COVID-19.

METHODS

the use of excess mortality for all causes has been advocated as a measure of impact less vulnerable to biases. In this paper, observed mortality for all causes at municipality level in Italy in the period January-April 2020 was compared to the mortality observed in the corresponding period in the previous 5 years (2015-2019). Mortality data were made available by the Ministry of Internal Affairs Italian National Resident Population Demographic Archive and the Italian National Institute of Statistics (Istat). For each municipality, the posterior predictive distribution under a hierarchical null model was obtained. From the posterior predictive distribution, we obtained excess death counts, attributable community rates and q-values. Full Bayesian models implemented via MCMC simulations were used.

RESULTS

absolute number of excess deaths highlights the burden paid by major cities to the pandemic. The Attributable Community Rate provides a detailed picture of the spread of the pandemic among the municipalities of Lombardy, Piedmont, and Emilia-Romagna Regions. Using Q-values, it is clearly recognizable evidence of an excess of mortality from late February to April 2020 in a very geographically scattered number of municipalities. A trade-off between false discoveries and false non-discoveries shows the different values of public health actions.

CONCLUSIONS

despite the variety of approaches to calculate excess mortality, this study provides an original methodological approach to profile municipalities with excess deaths accounting for spatial and temporal uncertainty.

摘要

背景

世界卫生组织欧洲区域于 2020 年 1 月底报告了首例新冠肺炎确诊病例,自此,疫情迅速在欧洲蔓延。大流行对健康、社会和经济造成的影响难以评估,因为存在许多科学不确定性和未知因素。

目的

本文主要关注的是通过超额死亡率对各市镇进行分析的统计方法,这种方法由新冠肺炎直接或间接导致。

方法

人们提倡使用全因超额死亡率作为一种不易受到偏差影响的影响衡量指标。在本文中,意大利市镇层面 2020 年 1 月至 4 月的全因死亡率与前 5 年(2015-2019 年)同期的死亡率进行了比较。意大利内政部国家居民人口人口档案和意大利国家统计局(ISTAT)提供了死亡率数据。对于每个市镇,我们使用分层零假设下的后验预测分布来获得超额死亡人数、归因于社区的死亡率和 q 值。我们使用全贝叶斯模型通过 MCMC 模拟来实现。

结果

绝对超额死亡人数突出了主要城市在疫情中所承受的负担。归因于社区的死亡率为伦巴第、皮埃蒙特和艾米利亚-罗马涅地区的市镇之间的疫情传播提供了详细的信息。使用 q 值可以清楚地识别出 2020 年 2 月下旬至 4 月期间大量分散的市镇存在超额死亡率的证据。错误发现和非发现之间的权衡展示了公共卫生行动的不同价值。

结论

尽管有多种计算超额死亡率的方法,但本研究为分析有超额死亡人数的市镇提供了一种新颖的方法,该方法考虑了时空不确定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验