Cancer Prevention Fellowship Program, Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA.
Department of Family and Community Medicine, Penn State College of Medicine, The Pennsylvania State University, 134 Sipe Ave., #205, P.O. Box 850, MC HS72, Hershey, PA, 17033, USA.
Popul Health Metr. 2021 Jan 7;19(1):1. doi: 10.1186/s12963-020-00244-x.
Area-level measures are often used to approximate socioeconomic status (SES) when individual-level data are not available. However, no national studies have examined the validity of these measures in approximating individual-level SES.
Data came from ~ 3,471,000 participants in the Mortality Disparities in American Communities study, which links data from 2008 American Community Survey to National Death Index (through 2015). We calculated correlations, specificity, sensitivity, and odds ratios to summarize the concordance between individual-, census tract-, and county-level SES indicators (e.g., household income, college degree, unemployment). We estimated the association between each SES measure and mortality to illustrate the implications of misclassification for estimates of the SES-mortality association.
Participants with high individual-level SES were more likely than other participants to live in high-SES areas. For example, individuals with high household incomes were more likely to live in census tracts (r = 0.232; odds ratio [OR] = 2.284) or counties (r = 0.157; OR = 1.325) whose median household income was above the US median. Across indicators, mortality was higher among low-SES groups (all p < .0001). Compared to county-level, census tract-level measures more closely approximated individual-level associations with mortality.
Moderate agreement emerged among binary indicators of SES across individual, census tract, and county levels, with increased precision for census tract compared to county measures when approximating individual-level values. When area level measures were used as proxies for individual SES, the SES-mortality associations were systematically underestimated. Studies using area-level SES proxies should use caution when selecting, analyzing, and interpreting associations with health outcomes.
当无法获得个体水平的数据时,常采用区域水平的指标来近似社会经济地位(SES)。然而,尚无全国性研究检验这些指标在近似个体水平 SES 方面的有效性。
数据来自 Mortality Disparities in American Communities 研究的约 347.1 万名参与者,该研究将 2008 年美国社区调查的数据与国家死亡指数(截至 2015 年)相关联。我们计算了相关性、特异性、敏感性和优势比,以总结个体、普查区和县级 SES 指标(例如家庭收入、大学学历、失业率)之间的一致性。我们估计了每种 SES 指标与死亡率之间的关联,以说明分类错误对 SES-死亡率关联估计的影响。
个体 SES 水平较高的参与者比其他参与者更有可能居住在 SES 水平较高的地区。例如,高收入家庭的个体更有可能居住在家庭收入中位数高于美国中位数的普查区(r = 0.232;优势比[OR] = 2.284)或县(r = 0.157;OR = 1.325)。在所有指标中,低 SES 组的死亡率均较高(均<0.0001)。与县级相比,普查区水平的指标更能近似个体水平与死亡率的关联。
个体、普查区和县级 SES 的二元指标之间存在中等程度的一致性,与县级指标相比,普查区指标在近似个体水平值时更精确。当使用区域水平的 SES 代理指标来代表个体 SES 时,SES-死亡率关联被系统低估。使用区域水平 SES 代理指标的研究在选择、分析和解释与健康结果的关联时应谨慎。