Nawkarkar Prachi, Chugh Sagrika, Sharma Surbhi, Jain Mukesh, Kajla Sachin, Kumar Shashi
1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research & Development, P O Burmamines, Jamshedpur831007, India.
Curr Genomics. 2020 Dec;21(8):610-623. doi: 10.2174/1389202921999201102164754.
The microalga produces high biomass and lipid content that could be suitable for producing economically viable biofuel at a commercial scale. Sequencing the complete chloroplast genome is crucial for the construction of a species-specific chloroplast transformation vector.
In this study, the complete chloroplast genome sequence (cpDNA) of -I was assembled; annotated and genetic transformation of the chloroplast was optimized. For the chloroplast transformation, we have tested two antibiotic resistance makers, aminoglycoside adenine transferase (A) gene and Sh gene conferring resistance to spectinomycin and zeocin, respectively. Transgene integration and homoplasty determination were confirmed using PCR, Southern blot and Droplet Digital PCR.
The chloroplast genome (109,642 bp) exhibited a quadripartite structure with two reverse repeat regions (IRA and IRB), a long single copy (LSC), and a small single copy (SSC) region. The genome encodes 116 genes, with 80 protein-coding genes, 32 tRNAs and 4 rRNAs. The cpDNA provided essential information like codons, UTRs and flank sequences for homologous recombination to make a species-specific vector that facilitated the transformation of I chloroplast. The transgenic algal colonies were retrieved on a TAP medium containing 400 mg. L spectinomycin, but no transgenic was recovered on the zeocin-supplemented medium. PCR and Southern blot analysis ascertained the transgene integration into the chloroplast genome, homologous recombination. The chloroplast genome copy number in wildtype and transgenic I was determined using Droplet Digital PCR.
The optimization of stable chloroplast transformation in marine alga I should open a gateway for directly engineering the strain for carbon concentration mechanisms to fix more CO, improving the photosynthetic efficiency and reducing the overall biofuels production cost.
微藻能产生高生物量和脂质含量,这使其有可能适合在商业规模上生产具有经济可行性的生物燃料。对完整叶绿体基因组进行测序对于构建物种特异性叶绿体转化载体至关重要。
在本研究中,组装了-I的完整叶绿体基因组序列(cpDNA);进行了注释并优化了叶绿体的遗传转化。对于叶绿体转化,我们测试了两种抗生素抗性标记,分别是赋予对壮观霉素和博来霉素抗性的氨基糖苷腺嘌呤转移酶(A)基因和Sh基因。使用PCR、Southern杂交和液滴数字PCR确认转基因整合和同源性测定。
叶绿体基因组(109,642 bp)呈现四分体结构,有两个反向重复区域(IRA和IRB)、一个长单拷贝(LSC)区域和一个小单拷贝(SSC)区域。该基因组编码116个基因,包括80个蛋白质编码基因、32个tRNA和4个rRNA。cpDNA提供了诸如密码子、非翻译区和侧翼序列等重要信息,用于同源重组以构建物种特异性载体,从而促进-I叶绿体的转化。在含有400 mg/L壮观霉素的TAP培养基上获得了转基因藻类菌落,但在添加博来霉素的培养基上未获得转基因菌落。PCR和Southern杂交分析确定了转基因已整合到叶绿体基因组中,即同源重组。使用液滴数字PCR测定了野生型和转基因-I中的叶绿体基因组拷贝数。
对海洋藻类-I中稳定叶绿体转化的优化应为直接改造该菌株以实现碳浓缩机制来固定更多CO₂、提高光合效率并降低生物燃料总体生产成本打开一扇大门。