Suppr超能文献

喹啉衍生物作为端粒酶抑制剂的分子建模:通过 3D-QSAR、分子动力学模拟和分子对接技术。

Molecular modelling of quinoline derivatives as telomerase inhibitors through 3D-QSAR, molecular dynamics simulation, and molecular docking techniques.

机构信息

Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, India.

出版信息

J Mol Model. 2021 Jan 7;27(2):30. doi: 10.1007/s00894-020-04648-2.

Abstract

Rising mortality due to cancer has led to the development and identification of newer targets and molecules to cure the disease. Telomerase is one of the attractive targets for design of many chemotherapeutic drugs. This research highlights the designing of novel telomerase inhibitors using ligand-based (3D-QSAR) and structure-based (molecular docking and molecular dynamics simulation) approaches. For the development of the 3D-QSAR model, 37 synthetic molecules reported earlier as telomerase inhibitors were selected from diversified literature. Three different alignment methods were explored; among them, distill alignment was found to be the best method with good statistical results and was used for the generation of QSAR model. Statistically significant CoMSIA model with a correlation coefficient (r) value of 0.974, leave one out (q) value of 0.662 and predicted correlation coefficient (r) value of 0.560 was used for the analysis of QSAR. For the MDS study, A-chain of telomerase was stabilised for 50 ns with respect to 1-atm pressure, with an average temperature of 299.98 k and with potential energy of 1,145,336 kJ/m converged in 997 steps. Furthermore, the behaviour study of variants towards the target revealed that active variable gave better affinity without affecting amino acid sequences and dimensions of protein which was accomplished through RMSD, RMSF and Rg analysis. Results of molecular docking study supported the outcomes of QSAR contour maps as ligand showed similar interactions with surrounded amino acids which were identified in contour map analysis. The results of the comprehensive study might be proved valuable for the development of potent telomerase inhibitors.

摘要

癌症导致的死亡率不断上升,促使人们开发和鉴定新的靶点和分子来治疗这种疾病。端粒酶是设计许多化疗药物的一个有吸引力的靶点。本研究强调了使用基于配体(3D-QSAR)和基于结构(分子对接和分子动力学模拟)的方法设计新型端粒酶抑制剂。为了开发 3D-QSAR 模型,从多样化的文献中选择了 37 种先前报道的作为端粒酶抑制剂的合成分子。探索了三种不同的对齐方法;其中,蒸馏对齐被发现是最好的方法,具有良好的统计结果,并用于生成 QSAR 模型。具有 0.974 的相关系数(r)值、0.662 的留一外推(q)值和 0.560 的预测相关系数(r)值的统计显著 CoMSIA 模型用于 QSAR 分析。对于 MDS 研究,端粒酶的 A 链在 1-atm 压力下稳定了 50ns,平均温度为 299.98k,势能为 1,145,336kJ/m,收敛于 997 步。此外,对变体针对目标的行为研究表明,活性变量在不影响氨基酸序列和蛋白质维度的情况下给出了更好的亲和力,这是通过 RMSD、RMSF 和 Rg 分析来实现的。分子对接研究的结果支持了 QSAR 等高线图的结果,因为配体与周围的氨基酸显示出相似的相互作用,这些相互作用在等高线图分析中得到了鉴定。综合研究的结果可能对开发有效的端粒酶抑制剂具有重要价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验