Wan Jun, Lai Zhihui, Li Jing, Zhou Jie, Gao Can
IEEE Trans Neural Netw Learn Syst. 2022 May;33(5):2181-2194. doi: 10.1109/TNNLS.2020.3044078. Epub 2022 May 2.
Recently, heatmap regression has been widely explored in facial landmark detection and obtained remarkable performance. However, most of the existing heatmap regression-based facial landmark detection methods neglect to explore the high-order feature correlations, which is very important to learn more representative features and enhance shape constraints. Moreover, no explicit global shape constraints have been added to the final predicted landmarks, which leads to a reduction in accuracy. To address these issues, in this article, we propose a multiorder multiconstraint deep network (MMDN) for more powerful feature correlations and shape constraints' learning. Especially, an implicit multiorder correlating geometry-aware (IMCG) model is proposed to introduce the multiorder spatial correlations and multiorder channel correlations for more discriminative representations. Furthermore, an explicit probability-based boundary-adaptive regression (EPBR) method is developed to enhance the global shape constraints and further search the semantically consistent landmarks in the predicted boundary for robust facial landmark detection. It is interesting to show that the proposed MMDN can generate more accurate boundary-adaptive landmark heatmaps and effectively enhance shape constraints to the predicted landmarks for faces with large pose variations and heavy occlusions. Experimental results on challenging benchmark data sets demonstrate the superiority of our MMDN over state-of-the-art facial landmark detection methods.
最近,热图回归在面部 landmark 检测中得到了广泛探索,并取得了显著性能。然而,大多数现有的基于热图回归的面部 landmark 检测方法都忽略了探索高阶特征相关性,而这对于学习更具代表性的特征和增强形状约束非常重要。此外,最终预测的 landmark 中没有添加明确的全局形状约束,这导致了准确率的降低。为了解决这些问题,在本文中,我们提出了一种多阶多约束深度网络(MMDN),用于更强大的特征相关性和形状约束学习。特别是,提出了一种隐式多阶相关几何感知(IMCG)模型,以引入多阶空间相关性和多阶通道相关性,从而获得更具判别力的表示。此外,还开发了一种基于显式概率的边界自适应回归(EPBR)方法,以增强全局形状约束,并在预测边界中进一步搜索语义一致的 landmark,以实现鲁棒的面部 landmark 检测。有趣的是,所提出的 MMDN 可以生成更准确的边界自适应 landmark 热图,并有效地增强对具有大姿态变化和严重遮挡的面部预测 landmark 的形状约束。在具有挑战性的基准数据集上的实验结果证明了我们的 MMDN 相对于现有面部 landmark 检测方法的优越性。