School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, 223814, China.
Microb Cell Fact. 2021 Jan 9;20(1):11. doi: 10.1186/s12934-020-01506-x.
D-Amino acids are increasingly used as building blocks to produce pharmaceuticals and fine chemicals. However, establishing a universal biocatalyst for the general synthesis of D-amino acids from cheap and readily available precursors with few by-products is challenging. In this study, we developed an efficient in vivo biocatalysis system for the synthesis of D-amino acids from L-amino acids by the co-expression of membrane-associated L-amino acid deaminase obtained from Proteus mirabilis (LAAD), meso-diaminopimelate dehydrogenases obtained from Symbiobacterium thermophilum (DAPDH), and formate dehydrogenase obtained from Burkholderia stabilis (FDH), in recombinant Escherichia coli.
To generate the in vivo cascade system, three strategies were evaluated to regulate enzyme expression levels, including single-plasmid co-expression, double-plasmid co-expression, and double-plasmid MBP-fused co-expression. The double-plasmid MBP-fused co-expression strain Escherichia coli pET-21b-MBP-laad/pET-28a-dapdh-fdh, exhibiting high catalytic efficiency, was selected. Under optimal conditions, 75 mg/mL of E. coli pET-21b-MBP-laad/pET-28a-dapdh-fdh whole-cell biocatalyst asymmetrically catalyzed the stereoinversion of 150 mM L-Phe to D-Phe, with quantitative yields of over 99% ee in 24 h, by the addition of 15 mM NADP and 300 mM ammonium formate. In addition, the whole-cell biocatalyst was used to successfully stereoinvert a variety of aromatic and aliphatic L-amino acids to their corresponding D-amino acids.
The newly constructed in vivo cascade biocatalysis system was effective for the highly selective synthesis of D-amino acids via stereoinversion.
D-氨基酸越来越多地被用作构建块来生产药物和精细化学品。然而,建立一种通用的生物催化剂,从廉价易得的前体中合成 D-氨基酸,同时产生很少的副产物,这是具有挑战性的。在这项研究中,我们通过共表达从变形杆菌(Proteus mirabilis)获得的膜结合 L-氨基酸脱氨酶(LAAD)、从 Thermophilum symbiotum 获得的 meso-二氨基庚二酸脱氢酶(DAPDH)和从 Burkholderia stabilis 获得的甲酸脱氢酶(FDH),在重组大肠杆菌中开发了一种从 L-氨基酸合成 D-氨基酸的高效体内生物催化系统。
为了生成体内级联系统,评估了三种策略来调节酶表达水平,包括单质粒共表达、双质粒共表达和双质粒 MBP 融合共表达。选择了双质粒 MBP 融合共表达菌株 Escherichia coli pET-21b-MBP-laad/pET-28a-dapdh-fdh,其表现出较高的催化效率。在最佳条件下,E. coli pET-21b-MBP-laad/pET-28a-dapdh-fdh 全细胞生物催化剂不对称催化 150 mM L-Phe 立体反转为 D-Phe,在 24 小时内定量产率超过 99%ee,添加 15 mM NADP 和 300 mM 甲酸铵。此外,该全细胞生物催化剂还成功地将多种芳香族和脂肪族 L-氨基酸立体反转成相应的 D-氨基酸。
新构建的体内级联生物催化系统有效地用于通过立体反转高度选择性地合成 D-氨基酸。