School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
ACS Synth Biol. 2024 Jun 21;13(6):1879-1892. doi: 10.1021/acssynbio.4c00176. Epub 2024 Jun 7.
Aromatic d-amino acids (d-AAs) play a pivotal role as important chiral building blocks and key intermediates in fine chemical and drug synthesis. -diaminopimelate dehydrogenase (DAPDH) serves as an excellent biocatalyst in the synthesis of d-AAs and their derivatives. However, its strict substrate specificity and the lack of efficient engineering methods have hindered its widespread application. Therefore, this study aims to elucidate the catalytic mechanism underlying DAPDH from (DAPDH) through the examination of its crystallographic structure, computational simulations of potential energies and molecular dynamics simulations, and site-directed mutagenesis. Mechanism-guided computational design showed that the optimal mutant DAPDH-M3 increased specific activity and catalytic efficiency (/) for aromatic keto acids up to 124-fold and 92.4-fold, respectively, compared to that of the wild type. Additionally, it expanded the substrate scope to 10 aromatic keto acid substrates. Finally, six high-value-added aromatic d-AAs and their derivatives were synthesized using a one-pot three-enzyme cascade reaction, exhibiting a good conversion rate ranging from 32 to 84% and excellent stereoselectivity (enantiomeric excess >99%). These findings provide a potential synthetic pathway for the green industrial production of aromatic d-AAs.
芳香族 d-氨基酸 (d-AAs) 作为重要的手性构建块和精细化工与药物合成的关键中间体,发挥着关键作用。-二氨基庚二酸脱氢酶 (DAPDH) 作为合成 d-AAs 及其衍生物的优秀生物催化剂。然而,其严格的底物特异性和缺乏有效的工程方法限制了其广泛应用。因此,本研究旨在通过研究其晶体结构、潜在能量的计算模拟和分子动力学模拟以及定点突变,阐明 (DAPDH) 中的 DAPDH 催化机制。基于机制的计算设计表明,与野生型相比,最优突变体 DAPDH-M3 对芳香族酮酸的比活性和催化效率 (/ ) 分别提高了 124 倍和 92.4 倍。此外,它扩大了底物范围,可作用于 10 种芳香族酮酸底物。最后,使用一锅三步酶级联反应合成了六种高附加值的芳香族 d-AAs 及其衍生物,转化率在 32%至 84%之间,立体选择性(对映体过量>99%)良好。这些发现为芳香族 d-AAs 的绿色工业生产提供了潜在的合成途径。