Suppr超能文献

无领导者速度情况下基于干扰抑制的海面船舶自适应同步

Adaptive synchronization of marine surface ships using disturbance rejection without leader velocity.

作者信息

Hu Xin, Wei Xinjiang, Gong Qingtao, Gu Jianzhong

机构信息

School of Mathematics and Statistics Science, Ludong University, Yantai, Shandong, 264025, PR China.

School of Mathematics and Statistics Science, Ludong University, Yantai, Shandong, 264025, PR China.

出版信息

ISA Trans. 2021 Aug;114:72-81. doi: 10.1016/j.isatra.2020.12.044. Epub 2020 Dec 29.

Abstract

This work realizes the adaptive neural disturbance rejection for the leader-follower cooperative synchronization of surface ships with model perturbations and ocean disturbances without leader velocity measurements. The virtual ship alleviates the requirements on leader ship's velocities such that the information requirements are only position and heading on the leader ship. The adaptive neural networks approximate model perturbations. The robustifying term attenuates neural network approximation errors. The adaptive neural network-based disturbance observer achieves the disturbance rejection which is integrated with the dynamic surface control technique. The supply ship synchronization control system is ensured to be practical stable. The synchronization control realizes the ship's cooperative synchronization navigation. Simulations with comparisons validate the synchronization scheme.

摘要

这项工作实现了水面舰艇在存在模型扰动和海洋干扰且无领导者速度测量情况下的自适应神经干扰抑制,用于领导者 - 跟随者协同同步。虚拟舰艇减轻了对领导者速度的要求,使得对领导者舰艇的信息需求仅为位置和航向。自适应神经网络逼近模型扰动。鲁棒项减弱神经网络逼近误差。基于自适应神经网络的干扰观测器实现了干扰抑制,并与动态面控制技术相结合。确保补给船同步控制系统实际稳定。同步控制实现了舰艇的协同同步导航。对比仿真验证了同步方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验