van de Straat R, Vromans R M, Bosman P, de Vries J, Vermeulen N P
Department of Pharmacochemistry, Molecular Toxicology, Free University, Amsterdam, The Netherlands.
Chem Biol Interact. 1988;64(3):267-80. doi: 10.1016/0009-2797(88)90102-0.
The mechanism by which the hepatic cytochrome P-450 (Cyt. P-450) containing mixed-function oxidase system oxidizes the analgesic drug paracetamol (PAR) to a hepatotoxic metabolite was studied. Since previous studies excluded the possibility of oxygenation of PAR, three other mechanisms, namely direct 1-electron oxidation by a Cyt. P-450-ferrous-dioxygen complex under concomitant formation of H2O2 to N-acetyl-p-semiquinone imine (NAPSQI), direct 2-electron oxidation by a Cyt. P-450-ferric-oxene complex to N-acetyl-p-benzoquinone imine (NAPQI) and indirect oxidation by active oxygen species released from Cyt. P-450, were considered. Indirect oxidation by active oxygen species was not involved, as active oxygen scavengers such as superoxide dismutase, catalase and DMSO did not affect the oxidation of PAR in hepatic microsomes. No reaction products characteristic for a direct 1-electron oxidation of PAR by Cyt. P-450 were observed: neither NAPSQI radical formation was detectable by ESR, nor PAR-dimer formation, nor stimulation of the microsomal H2O2 production was found to occur. In fact, PAR inhibited the spontaneous microsomal H2O2 formation. Studies on the reactions of NAPSQI with glutathione (GSH) revealed that NAPSQI hardly conjugated with GSH to a 3-glutathionyl-paracetamol conjugate (PAR-GSH) conjugate. The reactions of the elusive reactive metabolite formed during microsomal oxidation of PAR in the presence of GSH closely resembled those of synthetic NAPQI: both PAR-GSH and oxidized glutathione (GSSG) formation occurred. Furthermore, in agreement with a 2-electron oxidation hypothesis, iodosobenzene-dependent oxidation of PAR by cyt. P-450 in the presence of GSH resulted in the formation of the PAR-GSH conjugate. It is concluded that bioactivation of PAR by the Cyt. P-450 containing mixed-function oxidase system consists of a direct 2-electron oxidation to NAPQI.
研究了肝脏中含有混合功能氧化酶系统的细胞色素P - 450(Cyt. P - 450)将镇痛药物对乙酰氨基酚(PAR)氧化为肝毒性代谢物的机制。由于先前的研究排除了PAR发生氧合作用的可能性,因此考虑了其他三种机制,即Cyt. P - 450 - 亚铁 - 双氧复合物在伴随形成H2O2的情况下将PAR直接单电子氧化为N - 乙酰 - p - 半醌亚胺(NAPSQI),Cyt. P - 450 - 铁 - 氧烯复合物将PAR直接双电子氧化为N - 乙酰 - p - 苯醌亚胺(NAPQI),以及Cyt. P - 450释放的活性氧物种进行间接氧化。活性氧物种的间接氧化未参与其中,因为超氧化物歧化酶、过氧化氢酶和二甲基亚砜等活性氧清除剂不会影响肝微粒体中PAR的氧化。未观察到Cyt. P - 450对PAR进行直接单电子氧化的特征反应产物:通过电子顺磁共振(ESR)检测不到NAPSQI自由基的形成,也未发现PAR二聚体的形成,且未发现微粒体H2O2生成受到刺激。实际上,PAR抑制了微粒体自发形成H2O2。对NAPSQI与谷胱甘肽(GSH)反应的研究表明,NAPSQI几乎不与GSH结合形成3 - 谷胱甘肽基 - 对乙酰氨基酚缀合物(PAR - GSH)。在GSH存在下PAR微粒体氧化过程中形成的难以捉摸的活性代谢物的反应与合成NAPQI的反应非常相似:PAR - GSH和氧化型谷胱甘肽(GSSG)均有形成。此外,与双电子氧化假说一致,在GSH存在下,细胞色素P - 450对PAR进行的亚碘酰苯依赖性氧化导致了PAR - GSH缀合物的形成。结论是,Cyt. P - 450含混合功能氧化酶系统对PAR的生物活化包括将其直接双电子氧化为NAPQI。