Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Science, Haikou 571100, China.
J Hazard Mater. 2021 Jun 5;411:124971. doi: 10.1016/j.jhazmat.2020.124971. Epub 2020 Dec 25.
The molecular and physiological mechanisms of how rare earth oxide nanoparticles (NPs) alter radish (Raphanus sativus L.) taproot formation and cracking were investigated in the present study. We compared plants that received suspensions of 10, 50, 100, 300 mg L of LaO NPs, 300 m L LaO bulk-particles (BPs), 0.8 m L La, or only water for six days during their tuber formation period. 100 and 300 mg L LaO NPs exposure decreased storage root biomass by 38% and 60%, respectively, and they both induced visible root cracking. Physiological analyses showed that LaO NPs exposure (>100 mg L) significantly inhibited leaf net photosynthetic rate, cell wall pectin synthesis of both storage root epidermis and xylem parenchyma tissues, but increased the contents of cellulose and hemicellulose 1 in root epidermis cell walls. Moreover, transcriptome analysis further found that LaO NPs changed root cell wall structure by down-regulating core genes involved in cell wall pectin and IAA biosynthesis, which coincided with the observed LaO NPs-induced root cracking. Our results revealed the molecular mechanisms related to cell wall carbohydrate metabolism in response to NPs stress, providing a step forward for understanding the causes of NPs phytotoxicity on edible plant taproot formation and cracking.
本研究旨在探讨稀土氧化物纳米颗粒(NPs)如何改变萝卜(Raphanus sativus L.)主根形成和开裂的分子和生理机制。我们将接受为期六天的 10、50、100、300mg/L LaO NPs、300mL LaO 体相粒子(BPs)、0.8mL La 或仅水悬浮液处理的植物进行比较。100 和 300mg/L LaO NPs 暴露分别使贮藏根生物量减少 38%和 60%,并均导致可见的根开裂。生理分析表明,LaO NPs 暴露(>100mg/L)显著抑制叶片净光合速率,贮藏根表皮和木质部薄壁组织细胞壁的果胶合成,但增加了根表皮细胞壁中纤维素和半纤维素 1 的含量。此外,转录组分析进一步发现,LaO NPs 通过下调参与细胞壁果胶和 IAA 生物合成的核心基因来改变根细胞的细胞壁结构,这与观察到的 LaO NPs 诱导的根开裂一致。我们的研究结果揭示了与细胞壁碳水化合物代谢相关的分子机制,以响应 NPs 胁迫,为理解 NPs 对食用植物主根形成和开裂的植物毒性原因提供了新的认识。