Suppr超能文献

Developmental changes of nerve growth factor levels in sympathetic ganglia and their target organs.

作者信息

Korsching S, Thoenen H

机构信息

Max-Planck-Institute for Psychiatry, Department of Neurochemistry, Martinsried, Federal Republic of Germany.

出版信息

Dev Biol. 1988 Mar;126(1):40-6. doi: 10.1016/0012-1606(88)90236-9.

Abstract

The predominant source of nerve growth factor (NGF) used by mature sympathetic neurons originates in their target organs (Heumann, R., Korsching, S., Scott, J., and Thoenen, H. (1984), EMBO J. 3, 3183-3189; Korsching, S., and Thoenen, H. (1985), J. Neurosci. 5, 1058-1061). We have determined the NGF content of two sympathetically innervated mouse organs, submandibular gland and heart ventricle, and of sympathetic ganglia from mouse and rat between embryonic Day 12 (E12) and adulthood. NGF levels were measured by a two-site enzyme immunassay (Korsching, S., and Thoenen, H. (1983), Proc. Natl. Acad. Sci. USA 80, 3513-3516). In heart ventricle and submandibular gland, NGF first became detectable around the time of initial innervation by sympathetic neurons (E12 and E13, respectively) and increased respectively 14- and 7-fold in the following 2 days, to reach adult levels already at E14 for heart ventricle (1.4 +/- 0.2 ng NGF/g wet wt). NGF in the superior cervical ganglion (SCG) was first detected at the same time as in its target organ, the submandibular gland. NGF content in the SCG then increased 6-fold during the next 2 days and continued to increase until the end of the third postnatal week, when adult levels were reached. Although the levels of NGF in the adult mouse submandibular gland are sexually dimorphic and six orders of magnitude higher than those in other sympathetic target organs, no sex difference in the NGF content was found in either developing submandibular gland or SCG until the end of the third postnatal week. Moreover, the steep NGF increase observed in the male submandibular gland after postnatal Day 18 (250-fold within the following 3 days and up to the 55,000-fold in the next 7 days) was not reflected in a corresponding increase in the NGF content of the male SCG. These data indicate that, in accordance with earlier findings (see Levi-Montalcini, R., and Angeletti, P. U. (1968), Physiol. Rev. 48, 534-569), SCG neurons do not have access to the large amounts of NGF synthesized during and after adolescence in the mouse submandibular gland. Our results support the concept that initial fiber outgrowth of sympathetic neurons is neither dependent on NGF nor mediated by it. The time course of NGF levels in the SCG is consistent with the concept that sympathetic neurons are provided with NGF by means of retrograde axonal transport from the innervated organs already early in development.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验