Savage Travis J, Dunphy Darren R, Harbaugh Svetlana, Kelley-Loughnane Nancy, Harper Jason C, Brinker C Jeffrey
Chemical & Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87106, United States.
Air Force Research Laboratory, Human Effectiveness Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States.
ACS Biomater Sci Eng. 2015 Dec 14;1(12):1231-1238. doi: 10.1021/acsbiomaterials.5b00261. Epub 2015 Nov 13.
The remarkable impact encapsulation matrix chemistry can have on the bioactivity and viability of integrated living cells is reported. Two silica chemistries (aqueous silicate and alkoxysilane), and a functional component additive (glycerol), are employed to generate three distinct silica matrices. These matrices are used to encapsulate living cells engineered with a synthetic riboswitch for cell-based biosensing. Following encapsulation, membrane integrity, reproductive capability, and riboswitch-based protein expression levels and rates are measured over a 5 week period. Striking differences in bioactivity, viability, and biosensing performance are observed for cells encapsulated within the different matrices. cells encapsulated for 35 days in aqueous silicate-based (AqS) matrices showed relatively low membrane integrity, but high reproductive capability in comparison to cells encapsulated in glycerol containing sodium silicate-based (AqS + g) and alkoxysilane-based (PGS) gels. Further, cells in sodium silicate-based matrices showed increasing fluorescence output over time, resulting in a 1.8-fold higher fluorescence level, and a faster expression rate, over cells free in solution. This unusual and unique combination of biological properties demonstrates that careful design of the encapsulation matrix chemistry can improve functionality of the biocomposite material, and result in new and unexpected physiological states.
据报道,封装基质化学对整合活细胞的生物活性和活力具有显著影响。采用两种二氧化硅化学物质(水玻璃和烷氧基硅烷)以及一种功能成分添加剂(甘油)来生成三种不同的二氧化硅基质。这些基质用于封装经过工程改造带有合成核糖开关的活细胞,用于基于细胞的生物传感。封装后,在5周的时间内测量细胞膜完整性、繁殖能力以及基于核糖开关的蛋白质表达水平和速率。对于封装在不同基质中的细胞,观察到生物活性、活力和生物传感性能存在显著差异。与封装在含甘油的硅酸钠基(AqS + g)和烷氧基硅烷基(PGS)凝胶中的细胞相比,封装在水玻璃基(AqS)基质中35天的细胞显示出相对较低的膜完整性,但繁殖能力较高。此外,硅酸钠基基质中的细胞随着时间推移荧光输出增加,与溶液中游离的细胞相比,荧光水平高出1.8倍,且表达速率更快。这种生物学特性的异常且独特的组合表明,精心设计封装基质化学可以改善生物复合材料的功能,并导致新出现的意外生理状态。