S.C. NanoPRO START MC S.R.L., Oltenitei, No. 388, District 4, 041337 Bucharest, Romania.
Center for Surface Science and Nanotechnology (CSSNT), University Politehnica Bucharest, 060042 Bucharest, Romania.
Sensors (Basel). 2021 Jan 7;21(2):355. doi: 10.3390/s21020355.
Monitoring fluid flow rates is imperative for a variety of industries including biomedical engineering, chemical engineering, the food industry, and the oil and gas industries. We propose a flow meter that, unlike turbine or pressure-based sensors, is not flow intrusive, requires zero maintenance, has low risk of clogging, and is compatible with harsh conditions. Using optical fiber sensing, we monitor the temperature distribution along a fluid conduit. Pulsed heat injection locally elevates the fluid's temperature, and from the propagation velocity of the heat downstream, the fluid's velocity is determined. The method is experimentally validated for water and ethanol using optical frequency-domain reflectometry (OFDR) with millimetric spatial resolution over a 1.2 m-long conduit. Results demonstrate that such sensing yields accurate data with a linear response. By changing the optical fiber interrogation to time-domain distributed sensing approaches, the proposed technique can be scaled to cover sensing ranges of several tens of kilometers. On the other extreme, miniaturization for instance by using integrated optical waveguides could potentially bring this flow monitoring technique to microfluidic systems or open future avenues for novel "lab-in-a-fiber" technologies with biomedical applications.
监测流体流量对于包括生物医学工程、化学工程、食品工业和石油和天然气工业在内的各种行业都是至关重要的。我们提出了一种流量计,与涡轮或压力传感器不同,它不会干扰流量,无需维护,堵塞风险低,并且适用于恶劣的条件。我们使用光纤传感来监测沿流体管道的温度分布。脉冲热注入会局部提高流体的温度,并且可以根据热量在下游的传播速度来确定流体的速度。该方法使用毫米级空间分辨率的光频域反射计(OFDR)对 1.2 米长的管道中的水和乙醇进行了实验验证。结果表明,这种传感方法具有线性响应,可提供准确的数据。通过将光纤询问转换为时域分布式传感方法,该技术可以扩展到覆盖数十公里的传感范围。另一方面,例如通过使用集成光波导进行小型化,可能会将这种流量监测技术引入微流控系统,或者为具有生物医学应用的新型“光纤内实验室”技术开辟新的途径。