National Energy Technology Laboratory, United States Department of Energy, USA.
Nanoscale. 2013 Oct 7;5(19):9030-9. doi: 10.1039/c3nr02891g. Epub 2013 Aug 16.
Embedded sensors capable of operation in extreme environments including high temperatures, high pressures, and highly reducing, oxidizing and/or corrosive environments can make a significant impact on enhanced efficiencies and reduced greenhouse gas emissions of current and future fossil-based power generation systems. Relevant technologies can also be leveraged in a wide range of other applications with similar needs including nuclear power generation, industrial process monitoring and control, and aviation/aerospace. Here we describe a novel approach to embedded sensing under extreme temperature conditions by integration of Au-nanoparticle based plasmonic nanocomposite thin films with optical fibers in an evanescent wave absorption spectroscopy configuration. Such sensors can potentially enable simultaneous temperature and gas sensing at temperatures approaching 900-1000 °C in a manner compatible with embedded and distributed sensing approaches. The approach is demonstrated using the Au/SiO2 system deposited on silica-based optical fibers. Stability of optical fibers under relevant high temperature conditions and interactions with changing ambient gas atmospheres is an area requiring additional investigation and development but the simplicity of the sensor design makes it potentially cost-effective and may offer a potential for widespread deployment.
能够在极端环境中运行的嵌入式传感器,包括高温、高压以及高度还原、氧化和/或腐蚀性环境,将对提高现有和未来基于化石燃料的发电系统的效率和减少温室气体排放产生重大影响。相关技术还可以在具有类似需求的其他各种应用中得到利用,包括核能发电、工业过程监测和控制以及航空航天。在这里,我们通过将基于金纳米粒子的等离子体纳米复合材料薄膜与光纤集成在倏逝波吸收光谱配置中,描述了一种在极端温度条件下进行嵌入式传感的新方法。这种传感器可以潜在地实现在接近 900-1000°C 的温度下同时进行温度和气体传感,并且与嵌入式和分布式传感方法兼容。该方法使用沉积在基于二氧化硅的光纤上的 Au/SiO2 系统进行了演示。在相关高温条件下光纤的稳定性以及与不断变化的环境气体氛围的相互作用是需要进一步研究和开发的领域,但传感器设计的简单性使其具有潜在的成本效益,并可能为广泛部署提供潜力。