Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada.
Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS 5310, INSERM U1217, 8 Rockefeller Ave, 69008, Lyon, France.
Skelet Muscle. 2021 Jan 11;11(1):4. doi: 10.1186/s13395-020-00259-w.
In response to muscle injury, muscle stem cells integrate environmental cues in the damaged tissue to mediate regeneration. These environmental cues are tightly regulated to ensure expansion of muscle stem cell population to repair the damaged myofibers while allowing repopulation of the stem cell niche. These changes in muscle stem cell fate result from changes in gene expression that occur in response to cell signaling from the muscle environment.Integration of signals from the muscle environment leads to changes in gene expression through epigenetic mechanisms. Such mechanisms, including post-translational modification of chromatin and nucleosome repositioning, act to make specific gene loci more, or less, accessible to the transcriptional machinery. In youth, the muscle environment is ideally structured to allow for coordinated signaling that mediates efficient regeneration. Both age and disease alter the muscle environment such that the signaling pathways that shape the healthy muscle stem cell epigenome are altered. Altered epigenome reduces the efficiency of cell fate transitions required for muscle repair and contributes to muscle pathology. However, the reversible nature of epigenetic changes holds out potential for restoring cell fate potential to improve muscle repair in myopathies.In this review, we will describe the current knowledge of the mechanisms allowing muscle stem cell fate transitions during regeneration and how it is altered in muscle disease. In addition, we provide some examples of how epigenetics could be harnessed therapeutically to improve regeneration in various muscle pathologies.
针对肌肉损伤,肌肉干细胞整合受损组织中的环境线索来介导再生。这些环境线索受到严格调控,以确保肌肉干细胞群体的扩增,从而修复受损的肌纤维,同时允许干细胞龛的再填充。肌肉干细胞命运的这些变化源自基因表达的变化,这些变化是对来自肌肉环境的细胞信号的反应而发生的。肌肉环境信号的整合通过表观遗传机制导致基因表达的变化。这种机制,包括染色质的翻译后修饰和核小体重定位,作用是使特定基因座更容易或更难被转录机制接近。在年轻时,肌肉环境被理想地构建,以允许协调的信号传导,从而介导有效的再生。年龄和疾病都会改变肌肉环境,从而改变塑造健康肌肉干细胞表观基因组的信号通路。改变的表观基因组降低了肌肉修复所需的细胞命运转变的效率,并导致肌肉病理学。然而,表观遗传变化的可逆性为恢复细胞命运潜力以改善肌病中的肌肉修复提供了可能性。在这篇综述中,我们将描述允许肌肉干细胞在再生过程中进行命运转变的机制的现有知识,以及它在肌肉疾病中是如何改变的。此外,我们提供了一些例子,说明如何利用表观遗传学来治疗各种肌肉病理学中的再生。