Suppr超能文献

调控原子级平整的LaNiO薄膜中的电化学驱动表面转变以增强水电解

Tuning electrochemically driven surface transformation in atomically flat LaNiO thin films for enhanced water electrolysis.

作者信息

Baeumer Christoph, Li Jiang, Lu Qiyang, Liang Allen Yu-Lun, Jin Lei, Martins Henrique Perin, Duchoň Tomáš, Glöß Maria, Gericke Sabrina M, Wohlgemuth Marcus A, Giesen Margret, Penn Emily E, Dittmann Regina, Gunkel Felix, Waser Rainer, Bajdich Michal, Nemšák Slavomír, Mefford J Tyler, Chueh William C

机构信息

Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.

Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.

出版信息

Nat Mater. 2021 May;20(5):674-682. doi: 10.1038/s41563-020-00877-1. Epub 2021 Jan 11.

Abstract

Structure-activity relationships built on descriptors of bulk and bulk-terminated surfaces are the basis for the rational design of electrocatalysts. However, electrochemically driven surface transformations complicate the identification of such descriptors. Here we demonstrate how the as-prepared surface composition of (001)-terminated LaNiO epitaxial thin films dictates the surface transformation and the electrocatalytic activity for the oxygen evolution reaction. Specifically, the Ni termination (in the as-prepared state) is considerably more active than the La termination, with overpotential differences of up to 150 mV. A combined electrochemical, spectroscopic and density-functional theory investigation suggests that this activity trend originates from a thermodynamically stable, disordered NiO surface layer that forms during the operation of Ni-terminated surfaces, which is kinetically inaccessible when starting with a La termination. Our work thus demonstrates the tunability of surface transformation pathways by modifying a single atomic layer at the surface and that active surface phases only develop for select as-synthesized surface terminations.

摘要

基于体相和体相终止表面描述符建立的结构-活性关系是合理设计电催化剂的基础。然而,电化学驱动的表面转变使此类描述符的识别变得复杂。在此,我们展示了(001)终止的LaNiO外延薄膜的制备态表面组成如何决定表面转变以及析氧反应的电催化活性。具体而言,镍终止(在制备态)比镧终止活性高得多,过电位差异高达150 mV。电化学、光谱和密度泛函理论的联合研究表明,这种活性趋势源于镍终止表面运行过程中形成的热力学稳定、无序的NiO表面层,而从镧终止开始时,动力学上无法形成该表面层。因此,我们的工作证明了通过修饰表面的单个原子层来调节表面转变途径,并且活性表面相仅在特定的合成表面终止情况下才会形成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验