Suppr超能文献

机器学习揭示了人类神经元和神经胶质中体细胞 L1 插入的双侧分布。

Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia.

机构信息

Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA.

Department of Genetics, Stanford University, Palo Alto, CA, USA.

出版信息

Nat Neurosci. 2021 Feb;24(2):186-196. doi: 10.1038/s41593-020-00767-4. Epub 2021 Jan 11.

Abstract

Retrotransposons can cause somatic genome variation in the human nervous system, which is hypothesized to have relevance to brain development and neuropsychiatric disease. However, the detection of individual somatic mobile element insertions presents a difficult signal-to-noise problem. Using a machine-learning method (RetroSom) and deep whole-genome sequencing, we analyzed L1 and Alu retrotransposition in sorted neurons and glia from human brains. We characterized two brain-specific L1 insertions in neurons and glia from a donor with schizophrenia. There was anatomical distribution of the L1 insertions in neurons and glia across both hemispheres, indicating retrotransposition occurred during early embryogenesis. Both insertions were within the introns of genes (CNNM2 and FRMD4A) inside genomic loci associated with neuropsychiatric disorders. Proof-of-principle experiments revealed these L1 insertions significantly reduced gene expression. These results demonstrate that RetroSom has broad applications for studies of brain development and may provide insight into the possible pathological effects of somatic retrotransposition.

摘要

逆转座子可引起人类神经系统的体细胞基因组变异,这被假设与大脑发育和神经精神疾病有关。然而,个体体细胞移动元件插入的检测存在信号噪声比的难题。本研究使用机器学习方法(RetroSom)和深度全基因组测序,分析了从人脑分离的神经元和神经胶质细胞中的 L1 和 Alu 逆转座子。我们对一名患有精神分裂症的供体的神经元和神经胶质细胞中的两个脑特异性 L1 插入进行了特征描述。这两个 L1 插入在两个大脑半球的神经元和神经胶质细胞中存在解剖分布,表明逆转座子发生在早期胚胎发育过程中。这两个插入均位于与神经精神疾病相关的基因组位点内的基因(CNNM2 和 FRMD4A)的内含子中。验证实验表明,这些 L1 插入显著降低了基因表达。这些结果表明 RetroSom 广泛适用于大脑发育的研究,并可能为体细胞逆转座的可能病理影响提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3e1/8806165/ae92228bb723/nihms-1648953-f0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验