Suppr超能文献

通过邻近标记技术解析分子相互作用。

Deciphering molecular interactions by proximity labeling.

机构信息

Department of Genetics, Stanford University, Stanford, CA, USA.

Cancer Biology Program, Stanford University, Stanford, CA, USA.

出版信息

Nat Methods. 2021 Feb;18(2):133-143. doi: 10.1038/s41592-020-01010-5. Epub 2021 Jan 11.

Abstract

Many biological processes are executed and regulated through the molecular interactions of proteins and nucleic acids. Proximity labeling (PL) is a technology for tagging the endogenous interaction partners of specific protein 'baits', via genetic fusion to promiscuous enzymes that catalyze the generation of diffusible reactive species in living cells. Tagged molecules that interact with baits can then be enriched and identified by mass spectrometry or nucleic acid sequencing. Here we review the development of PL technologies and highlight studies that have applied PL to the discovery and analysis of molecular interactions. In particular, we focus on the use of PL for mapping protein-protein, protein-RNA and protein-DNA interactions in living cells and organisms.

摘要

许多生物过程是通过蛋白质和核酸的分子相互作用来执行和调节的。邻近标记 (PL) 是一种通过遗传融合到广谱酶来标记特定蛋白质“诱饵”的内源性相互作用伙伴的技术,这些酶可以在活细胞中催化可扩散反应性物质的产生。然后可以通过质谱或核酸测序来富集和鉴定与诱饵相互作用的标记分子。在这里,我们回顾了 PL 技术的发展,并强调了将 PL 应用于分子相互作用的发现和分析的研究。特别是,我们专注于使用 PL 来绘制活细胞和生物体中的蛋白质-蛋白质、蛋白质-RNA 和蛋白质-DNA 相互作用图谱。

相似文献

1
Deciphering molecular interactions by proximity labeling.
Nat Methods. 2021 Feb;18(2):133-143. doi: 10.1038/s41592-020-01010-5. Epub 2021 Jan 11.
2
Proximity labeling approaches to study protein complexes during virus infection.
Adv Virus Res. 2021;109:63-104. doi: 10.1016/bs.aivir.2021.02.001. Epub 2021 Apr 16.
3
Protein-protein interaction assays: eliminating false positive interactions.
Nat Methods. 2006 Feb;3(2):135-9. doi: 10.1038/nmeth0206-135.
4
Advances in enzyme-mediated proximity labeling and its potential for plant research.
Plant Physiol. 2022 Feb 4;188(2):756-768. doi: 10.1093/plphys/kiab479.
5
Molecular Spatiomics by Proximity Labeling.
Acc Chem Res. 2022 May 17;55(10):1411-1422. doi: 10.1021/acs.accounts.2c00061. Epub 2022 May 5.
6
Prediction of interactiveness of proteins and nucleic acids based on feature selections.
Mol Divers. 2010 Nov;14(4):627-33. doi: 10.1007/s11030-009-9198-9. Epub 2009 Oct 9.
7
BioID: A Proximity-Dependent Labeling Approach in Proteomics Study.
Methods Mol Biol. 2019;1871:143-151. doi: 10.1007/978-1-4939-8814-3_10.
8
Proximity labeling expansion microscopy (PL-ExM) evaluates interactome labeling techniques.
J Mater Chem B. 2024 Aug 28;12(34):8335-8348. doi: 10.1039/d4tb00516c.
9
From Affinity to Proximity Techniques to Investigate Protein Complexes in Plants.
Int J Mol Sci. 2021 Jul 1;22(13):7101. doi: 10.3390/ijms22137101.
10
Efficient proximity labeling in living cells and organisms with TurboID.
Nat Biotechnol. 2018 Oct;36(9):880-887. doi: 10.1038/nbt.4201. Epub 2018 Aug 20.

引用本文的文献

1
Amplifying antigen-induced cellular responses with proximity labelling.
Nature. 2025 Sep 10. doi: 10.1038/s41586-025-09518-6.
2
Genome-wide mapping of RNA-protein associations through sequencing.
Nat Biotechnol. 2025 Sep 9. doi: 10.1038/s41587-025-02780-z.
4
Endocytome profiling uncovers cell-surface protein dynamics underlying neuronal connectivity.
bioRxiv. 2025 Aug 29:2025.08.28.672852. doi: 10.1101/2025.08.28.672852.
6
Adaptation of the Protocol for the Isolation of Biotinylated Protein Complexes for Tissues.
Int J Mol Sci. 2025 Aug 19;26(16):8009. doi: 10.3390/ijms26168009.
7
diaPASEF-Powered Chemoproteomics Enables Deep Kinome Interaction Profiling.
J Proteome Res. 2025 Aug 27. doi: 10.1021/acs.jproteome.5c00109.
8
Tissue-specific consequences of tag fusions on protein expression in transgenic mice.
PLoS Genet. 2025 Aug 25;21(8):e1011830. doi: 10.1371/journal.pgen.1011830. eCollection 2025 Aug.
9
analysis of type III secretion chaperone proteins indicates a cytosolic handover of virulence effectors.
FEMS Microbes. 2025 Jul 31;6:xtaf010. doi: 10.1093/femsmc/xtaf010. eCollection 2025.

本文引用的文献

1
CBRPP: a new RNA-centric method to study RNA-protein interactions.
RNA Biol. 2021 Nov;18(11):1608-1621. doi: 10.1080/15476286.2021.1873620. Epub 2021 Feb 17.
2
Proximity labeling in mammalian cells with TurboID and split-TurboID.
Nat Protoc. 2020 Dec;15(12):3971-3999. doi: 10.1038/s41596-020-0399-0. Epub 2020 Nov 2.
3
RNA-protein interaction mapping via MS2- or Cas13-based APEX targeting.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22068-22079. doi: 10.1073/pnas.2006617117. Epub 2020 Aug 24.
4
CRISPR-assisted detection of RNA-protein interactions in living cells.
Nat Methods. 2020 Jul;17(7):685-688. doi: 10.1038/s41592-020-0866-0. Epub 2020 Jun 22.
5
Kir2.1 Interactome Mapping Uncovers PKP4 as a Modulator of the Kir2.1-Regulated Inward Rectifier Potassium Currents.
Mol Cell Proteomics. 2020 Sep;19(9):1436-1449. doi: 10.1074/mcp.RA120.002071. Epub 2020 Jun 15.
6
Split-TurboID enables contact-dependent proximity labeling in cells.
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12143-12154. doi: 10.1073/pnas.1919528117. Epub 2020 May 18.
7
Contact-ID, a tool for profiling organelle contact sites, reveals regulatory proteins of mitochondrial-associated membrane formation.
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12109-12120. doi: 10.1073/pnas.1916584117. Epub 2020 May 15.
8
Genomic Profiling by ALaP-Seq Reveals Transcriptional Regulation by PML Bodies through DNMT3A Exclusion.
Mol Cell. 2020 May 7;78(3):493-505.e8. doi: 10.1016/j.molcel.2020.04.004. Epub 2020 Apr 29.
9
Mapping p38α mitogen-activated protein kinase signaling by proximity-dependent labeling.
Protein Sci. 2020 May;29(5):1196-1210. doi: 10.1002/pro.3854. Epub 2020 Apr 7.
10
Identifying the Cardiac Dyad Proteome In Vivo by a BioID2 Knock-In Strategy.
Circulation. 2020 Mar 17;141(11):940-942. doi: 10.1161/CIRCULATIONAHA.119.043434. Epub 2020 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验