Suppr超能文献

通过低温电化学石墨化实现生物质衍生碳向高性能纳米石墨的低成本转化

Low-Cost Transformation of Biomass-Derived Carbon to High-Performing Nano-graphite via Low-Temperature Electrochemical Graphitization.

作者信息

Thapaliya Bishnu P, Luo Huimin, Halstenberg Phillip, Meyer Harry M, Dunlap John R, Dai Sheng

机构信息

Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

出版信息

ACS Appl Mater Interfaces. 2021 Jan 27;13(3):4393-4401. doi: 10.1021/acsami.0c19395. Epub 2021 Jan 12.

Abstract

Graphite, an essential component of energy storage devices, is traditionally synthesized via an energy-intensive thermal process (Acheson process) at ∼3300 K. However, the battery performance of such graphite is abysmal under fast-charging conditions, which is deemed essential for the propulsion of electric vehicles to the next level. Herein, a low-temperature electrochemical transformation approach has been demonstrated to afford a highly crystalline nano-graphite with the capability of tuning interlayer spacing to enhance the lithium diffusion kinetics in molten salts at 850 °C. The essence of our strategy lies in the effective electrocatalytic transformation of carbon to graphite at a lower temperature that could significantly increase the energy savings, reduce the cost, shorten the synthesis time, and replace the traditional graphite synthesis. The resulting graphite exhibits high purity, crystallinity, a high degree of graphitization, and a nanoflake architecture that all ensure fast lithium diffusion kinetics (∼2.0 × 10 cm s) through its nanosheet. Such unique features enable outstanding electrochemical performance (∼200 mA h g at 5C for 1000 cycles, 1C = 372 mA g) as a fast-charging anode for lithium-ion batteries. This finding paves the way to make high energy-density fast-charging batteries that could boost electromobility.

摘要

石墨是能量存储设备的重要组成部分,传统上是通过在约3300K的高温下进行耗能的热过程(艾奇逊法)合成的。然而,这种石墨在快速充电条件下的电池性能很差,而快速充电被认为是推动电动汽车发展到更高水平的关键。在此,一种低温电化学转化方法已被证明能够制备出高度结晶的纳米石墨,它能够调节层间距,以增强在850℃熔盐中的锂扩散动力学。我们策略的核心在于在较低温度下将碳有效地电催化转化为石墨,这可以显著提高能源节约、降低成本、缩短合成时间,并取代传统的石墨合成方法。所得石墨具有高纯度、结晶度、高石墨化程度和纳米片状结构,所有这些都确保了通过其纳米片的快速锂扩散动力学(约2.0×10 cm s)。这些独特的特性使其作为锂离子电池的快速充电阳极具有出色的电化学性能(在5C下1000次循环时约为200 mA h g,1C = 372 mA g)。这一发现为制造能够推动电动出行的高能量密度快速充电电池铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验