Suppr超能文献

多性状全转录组关联研究与概率性孟德尔随机化。

Multi-trait transcriptome-wide association studies with probabilistic Mendelian randomization.

机构信息

Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.

Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.

出版信息

Am J Hum Genet. 2021 Feb 4;108(2):240-256. doi: 10.1016/j.ajhg.2020.12.006.

Abstract

A transcriptome-wide association study (TWAS) integrates data from genome-wide association studies and gene expression mapping studies for investigating the gene regulatory mechanisms underlying diseases. Existing TWAS methods are primarily univariate in nature, focusing on analyzing one outcome trait at a time. However, many complex traits are correlated with each other and share a common genetic basis. Consequently, analyzing multiple traits jointly through multivariate analysis can potentially improve the power of TWASs. Here, we develop a method, moPMR-Egger (multiple outcome probabilistic Mendelian randomization with Egger assumption), for analyzing multiple outcome traits in TWAS applications. moPMR-Egger examines one gene at a time, relies on its cis-SNPs that are in potential linkage disequilibrium with each other to serve as instrumental variables, and tests its causal effects on multiple traits jointly. A key feature of moPMR-Egger is its ability to test and control for potential horizontal pleiotropic effects from instruments, thus maximizing power while minimizing false associations for TWASs. In simulations, moPMR-Egger provides calibrated type I error control for both causal effects testing and horizontal pleiotropic effects testing and is more powerful than existing univariate TWAS approaches in detecting causal associations. We apply moPMR-Egger to analyze 11 traits from 5 trait categories in the UK Biobank. In the analysis, moPMR-Egger identified 13.15% more gene associations than univariate approaches across trait categories and revealed distinct regulatory mechanisms underlying systolic and diastolic blood pressures.

摘要

全转录组关联研究(TWAS)整合了全基因组关联研究和基因表达图谱研究的数据,用于研究疾病相关的基因调控机制。现有的 TWAS 方法主要是单变量的,一次只分析一个结果特征。然而,许多复杂特征彼此相关,并有共同的遗传基础。因此,通过多变量分析联合分析多个特征可以提高 TWAS 的功效。在这里,我们开发了一种方法,moPMR-Egger(多结局概率孟德尔随机化与 Egger 假设),用于分析 TWAS 应用中的多个结局特征。moPMR-Egger 一次检查一个基因,依赖于与每个基因潜在连锁不平衡的顺式 SNP 作为工具变量,并联合检验其对多个特征的因果效应。moPMR-Egger 的一个关键特点是能够检验和控制工具的潜在水平多效性效应,从而在最小化假关联的同时最大化 TWAS 的功效。在模拟中,moPMR-Egger 为因果效应检验和水平多效性效应检验提供了校准的 I 型错误控制,并且在检测因果关联方面比现有的单变量 TWAS 方法更有效。我们应用 moPMR-Egger 分析了 UK Biobank 中的 5 个特征类别中的 11 个特征。在分析中,moPMR-Egger 在各特征类别中比单变量方法识别出了 13.15%更多的基因关联,并揭示了收缩压和舒张压背后的不同调控机制。

相似文献

1
Multi-trait transcriptome-wide association studies with probabilistic Mendelian randomization.
Am J Hum Genet. 2021 Feb 4;108(2):240-256. doi: 10.1016/j.ajhg.2020.12.006.
3
Transcriptome-wide association studies accounting for colocalization using Egger regression.
Genet Epidemiol. 2018 Jul;42(5):418-433. doi: 10.1002/gepi.22131. Epub 2018 May 29.
7
Prediction of causal genes at GWAS loci with pleiotropic gene regulatory effects using sets of correlated instrumental variables.
PLoS Genet. 2024 Nov 11;20(11):e1011473. doi: 10.1371/journal.pgen.1011473. eCollection 2024 Nov.
8
Model checking via testing for direct effects in Mendelian Randomization and transcriptome-wide association studies.
PLoS Comput Biol. 2021 Aug 2;17(8):e1009266. doi: 10.1371/journal.pcbi.1009266. eCollection 2021 Aug.
9
Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression.
Int J Epidemiol. 2015 Apr;44(2):512-25. doi: 10.1093/ije/dyv080. Epub 2015 Jun 6.
10
Conditional transcriptome-wide association study for fine-mapping candidate causal genes.
Nat Genet. 2024 Feb;56(2):348-356. doi: 10.1038/s41588-023-01645-y. Epub 2024 Jan 26.

引用本文的文献

3
FABIO: TWAS fine-mapping to prioritize causal genes for binary traits.
PLoS Genet. 2024 Dec 2;20(12):e1011503. doi: 10.1371/journal.pgen.1011503. eCollection 2024 Dec.
5
Multiome-wide Association Studies: Novel Approaches for Understanding Diseases.
Genomics Proteomics Bioinformatics. 2024 Dec 3;22(5). doi: 10.1093/gpbjnl/qzae077.
6
Translation of genome-wide association study: from genomic signals to biological insights.
Front Genet. 2024 Oct 3;15:1375481. doi: 10.3389/fgene.2024.1375481. eCollection 2024.
7
Causal relationship between complement and colorectal cancer: a drug target Mendelian randomization study.
Front Genet. 2024 Jul 23;15:1403509. doi: 10.3389/fgene.2024.1403509. eCollection 2024.
8
Hierarchical joint analysis of marginal summary statistics-Part II: High-dimensional instrumental analysis of omics data.
Genet Epidemiol. 2024 Oct;48(7):291-309. doi: 10.1002/gepi.22577. Epub 2024 Jun 17.
9
An overview of detecting gene-trait associations by integrating GWAS summary statistics and eQTLs.
Sci China Life Sci. 2024 Jun;67(6):1133-1154. doi: 10.1007/s11427-023-2522-8. Epub 2024 Mar 29.

本文引用的文献

1
Transcriptome-wide association studies: a view from Mendelian randomization.
Quant Biol. 2021 Jun;9(2):107-121. doi: 10.1007/s40484-020-0207-4.
4
TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits.
Am J Hum Genet. 2019 Aug 1;105(2):258-266. doi: 10.1016/j.ajhg.2019.05.018. Epub 2019 Jun 20.
5
Role of the COP9 Signalosome (CSN) in Cardiovascular Diseases.
Biomolecules. 2019 Jun 5;9(6):217. doi: 10.3390/biom9060217.
6
Immune mechanisms of hypertension.
Nat Rev Immunol. 2019 Aug;19(8):517-532. doi: 10.1038/s41577-019-0160-5.
7
Probabilistic fine-mapping of transcriptome-wide association studies.
Nat Genet. 2019 Apr;51(4):675-682. doi: 10.1038/s41588-019-0367-1. Epub 2019 Mar 29.
8
A statistical framework for cross-tissue transcriptome-wide association analysis.
Nat Genet. 2019 Mar;51(3):568-576. doi: 10.1038/s41588-019-0345-7. Epub 2019 Feb 25.
9
Multivariate genome-wide analyses of the well-being spectrum.
Nat Genet. 2019 Mar;51(3):445-451. doi: 10.1038/s41588-018-0320-8. Epub 2019 Jan 14.
10
The UK Biobank resource with deep phenotyping and genomic data.
Nature. 2018 Oct;562(7726):203-209. doi: 10.1038/s41586-018-0579-z. Epub 2018 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验