Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
Am J Hum Genet. 2021 Feb 4;108(2):240-256. doi: 10.1016/j.ajhg.2020.12.006.
A transcriptome-wide association study (TWAS) integrates data from genome-wide association studies and gene expression mapping studies for investigating the gene regulatory mechanisms underlying diseases. Existing TWAS methods are primarily univariate in nature, focusing on analyzing one outcome trait at a time. However, many complex traits are correlated with each other and share a common genetic basis. Consequently, analyzing multiple traits jointly through multivariate analysis can potentially improve the power of TWASs. Here, we develop a method, moPMR-Egger (multiple outcome probabilistic Mendelian randomization with Egger assumption), for analyzing multiple outcome traits in TWAS applications. moPMR-Egger examines one gene at a time, relies on its cis-SNPs that are in potential linkage disequilibrium with each other to serve as instrumental variables, and tests its causal effects on multiple traits jointly. A key feature of moPMR-Egger is its ability to test and control for potential horizontal pleiotropic effects from instruments, thus maximizing power while minimizing false associations for TWASs. In simulations, moPMR-Egger provides calibrated type I error control for both causal effects testing and horizontal pleiotropic effects testing and is more powerful than existing univariate TWAS approaches in detecting causal associations. We apply moPMR-Egger to analyze 11 traits from 5 trait categories in the UK Biobank. In the analysis, moPMR-Egger identified 13.15% more gene associations than univariate approaches across trait categories and revealed distinct regulatory mechanisms underlying systolic and diastolic blood pressures.
全转录组关联研究(TWAS)整合了全基因组关联研究和基因表达图谱研究的数据,用于研究疾病相关的基因调控机制。现有的 TWAS 方法主要是单变量的,一次只分析一个结果特征。然而,许多复杂特征彼此相关,并有共同的遗传基础。因此,通过多变量分析联合分析多个特征可以提高 TWAS 的功效。在这里,我们开发了一种方法,moPMR-Egger(多结局概率孟德尔随机化与 Egger 假设),用于分析 TWAS 应用中的多个结局特征。moPMR-Egger 一次检查一个基因,依赖于与每个基因潜在连锁不平衡的顺式 SNP 作为工具变量,并联合检验其对多个特征的因果效应。moPMR-Egger 的一个关键特点是能够检验和控制工具的潜在水平多效性效应,从而在最小化假关联的同时最大化 TWAS 的功效。在模拟中,moPMR-Egger 为因果效应检验和水平多效性效应检验提供了校准的 I 型错误控制,并且在检测因果关联方面比现有的单变量 TWAS 方法更有效。我们应用 moPMR-Egger 分析了 UK Biobank 中的 5 个特征类别中的 11 个特征。在分析中,moPMR-Egger 在各特征类别中比单变量方法识别出了 13.15%更多的基因关联,并揭示了收缩压和舒张压背后的不同调控机制。