Wise Steven G, Liu Hongjuan, Kondyurin Alexey, Byrom Michael J, Bannon Paul G, Edwards Glenn A, Weiss Anthony S, Bao Shisan, Bilek Marcela M
The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, New South Wales 2042, Australia.
Sydney Medical School, University of Sydney, Edward Ford Building (A27), Fisher Road, Sydney, New South Wales 2006, Australia.
ACS Biomater Sci Eng. 2016 Aug 8;2(8):1286-1297. doi: 10.1021/acsbiomaterials.6b00208. Epub 2016 Jul 12.
Expanded polytetrafluoroethylene (ePTFE) vascular conduits with less than or equal to 6 mm internal diameter typically occlude due to a combination of thrombus formation and neointimal hyperplasia. We hypothesized that by layering the polymerized elastin precursor, human tropoelastin, in the synthetic vessel lumen we could mimic the internal elastic lamina and so maintain low thrombogenicity while significantly reducing smooth muscle cell proliferation. The luminal surfaces of ePTFE conduits were activated with plasma immersion ion implantation (PIII) treatment to facilitate covalent attachment of tropoelastin. Multilayered tropoelastin vessels (2TE) enhanced endothelial cell attachment and proliferation in vitro and were superior to materials lacking the protein. In an ovine carotid interposition model of graft compatibility, partially tropoelastin coated vessels (1TE) thrombosed at a greater rate than control ePTFE, but 2TE maintained the same patency as controls. 2TE showed a significant reduction in neointimal area down to 9.7 ± 5.2% ( < 0.05) in contrast to 32.3 ± 3.9% for ePTFE alone. This reduction was due to a halving of the number of smooth muscle cells present and a corresponding reduction in their proliferation. 2TE, but not 1TE, enhanced the vascular compatibility of these materials: while both tropoelastin presentations increased in vitro endothelialization, only 2TE displayed the dual benefits of maintained hemocompatibility and simultaneously suppressed neointimal hyperplasia in vivo. We conclude that 2TE surface modification provides a significant improvement over ePTFE vascular conduits in a pilot large animal model study and presents an attractive path toward clinical applications for reduced diameter vessels.
内径小于或等于6毫米的膨体聚四氟乙烯(ePTFE)血管导管通常会因血栓形成和内膜增生共同作用而发生堵塞。我们推测,通过在合成血管腔内分层聚合弹性蛋白前体——人原弹性蛋白,能够模拟内弹性膜,从而保持低血栓形成性,同时显著减少平滑肌细胞增殖。采用等离子体浸没离子注入(PIII)处理对ePTFE导管的管腔表面进行活化,以促进原弹性蛋白的共价附着。多层原弹性蛋白血管(2TE)在体外增强了内皮细胞的附着和增殖,优于缺乏该蛋白的材料。在一个关于移植物相容性的绵羊颈动脉置换模型中,部分涂覆原弹性蛋白的血管(1TE)的血栓形成率高于对照ePTFE,但2TE保持了与对照相同的通畅率。与单独的ePTFE的32.3±3.9%相比,2TE的内膜面积显著减少至9.7±5.2%(<0.05)。这种减少是由于存在的平滑肌细胞数量减半以及其增殖相应减少所致。2TE而非1TE增强了这些材料的血管相容性:虽然两种原弹性蛋白表现形式都增加了体外内皮化,但只有2TE在体内显示出维持血液相容性和同时抑制内膜增生的双重益处。我们得出结论,在一项初步的大型动物模型研究中,2TE表面改性相对于ePTFE血管导管有显著改善,并为直径较小的血管的临床应用提供了一条有吸引力的途径。