Garcia Garcia Alejandro, Hébraud Anne, Duval Jean-Luc, Wittmer Corinne R, Gaut Ludovic, Duprez Delphine, Egles Christophe, Bedoui Fahmi, Schlatter Guy, Legallais Cecile
CNRS, UMR 7338 Laboratory of Biomechanics and Bioengineering, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200 Compiegne, France.
ICPEES UMR 7515, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France.
ACS Biomater Sci Eng. 2018 Sep 10;4(9):3317-3326. doi: 10.1021/acsbiomaterials.8b00521. Epub 2018 Aug 28.
The elaboration of biomimetic materials inspired from the specific structure of native bone is one the main goal of tissue engineering approaches. To offer the most appropriate environment for bone reconstruction, we combined electrospinning and electrospraying to elaborate an innovative scaffold composed of alternating layers of polycaprolactone (PCL) and hydroxyapatite (HA). In our approach, the electrospun PCL was shaped into a honeycomb-like structure with an inner diameter of 160 μm, capable of providing bone cells with a 3D environment while ensuring the material biomechanical strength. After 5 days of culture without any differentiation factor, the murine embryonic cell line demonstrated excellent cell viability on contact with the PCL-HA structures as well as active colonization of the scaffold. The cell differentiation, as tested by RT-qPCR, revealed a 6-fold increase in the expression of the RNA of the Bglap involved in bone mineralization as compared to a classical 2D culture. This differentiation of the cells into osteoblasts was confirmed by alkaline phosphatase staining of the scaffold cultivated with the cell lineage. Later on, organotypic cultures of embryonic bone tissues showed the high capacity of the PCL-HA honeycomb structure to guide the migration of differentiated bone cells throughout the cavities and the ridge of the biomaterial, with a colonization surface twice as big as that of the control. Taken together, our results indicate that PCL-HA honeycomb structures are biomimetic supports that promotes in vitro osteocompatibility, osteoconduction, and osteoinduction and could be suitable for being used for bone reconstruction in complex situations such as the repair of maxillofacial defects.
借鉴天然骨特定结构制备仿生材料是组织工程方法的主要目标之一。为了为骨重建提供最合适的环境,我们将静电纺丝和电喷雾相结合,制备了一种由聚己内酯(PCL)和羟基磷灰石(HA)交替层组成的创新支架。在我们的方法中,静电纺丝的PCL被制成内径为160μm的蜂窝状结构,能够为骨细胞提供三维环境,同时确保材料的生物力学强度。在没有任何分化因子的情况下培养5天后,小鼠胚胎细胞系与PCL-HA结构接触时表现出优异的细胞活力,并且支架有活跃的定植。通过RT-qPCR测试的细胞分化显示,与经典的二维培养相比,参与骨矿化的Bglap RNA表达增加了6倍。通过对用细胞系培养的支架进行碱性磷酸酶染色,证实了细胞向成骨细胞的分化。后来,胚胎骨组织的器官型培养表明,PCL-HA蜂窝结构具有很高的能力,可引导分化的骨细胞在生物材料的腔和嵴中迁移,定植表面是对照的两倍。综上所述,我们的结果表明,PCL-HA蜂窝结构是一种仿生支架,可促进体外骨相容性、骨传导性和骨诱导性,适用于复杂情况下的骨重建,如颌面缺损的修复。