MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P.R. China.
Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China.
Nat Commun. 2021 Jan 12;12(1):297. doi: 10.1038/s41467-020-20624-z.
GABA receptors (GABARs) are the primary fast inhibitory ion channels in the central nervous system. Dysfunction of trafficking and localization of GABARs to cell membranes is clinically associated with severe psychiatric disorders in humans. The GABARAP protein is known to support the stability of GABARs in synapses, but the underlying molecular mechanisms remain to be elucidated. Here, we show that GABARAP/GABARAPL1 directly binds to a previously unappreciated region in the γ2 subunit of GABAR. We demonstrate that GABARAP functions to stabilize GABARs via promoting its trafficking pathway instead of blocking receptor endocytosis. The GABARAPL1-γ2-GABAR crystal structure reveals the mechanisms underlying the complex formation. We provide evidence showing that phosphorylation of γ2-GABAR differentially modulate the receptor's binding to GABARAP and the clathrin adaptor protein AP2. Finally, we demonstrate that GABAergic synaptic currents are reduced upon specific blockage of the GABARAP-GABAR complex formation. Collectively, our results reveal that GABARAP/GABARAPL1, but not other members of the Atg8 family proteins, specifically regulates synaptic localization of GABARs via modulating the trafficking of the receptor.
GABA 受体 (GABARs) 是中枢神经系统中主要的快速抑制性离子通道。GABARs 向细胞膜的运输和定位功能障碍与人类严重的精神疾病临床相关。已知 GABARAP 蛋白支持 GABARs 在突触中的稳定性,但潜在的分子机制仍有待阐明。在这里,我们表明 GABARAP/GABARAPL1 直接结合 GABAR 的 γ2 亚基中以前未被重视的区域。我们证明 GABARAP 通过促进其运输途径而不是阻止受体内吞作用来稳定 GABAR。GABARAPL1-γ2-GABAR 晶体结构揭示了复合物形成的机制。我们提供的证据表明,γ2-GABAR 的磷酸化可差异调节受体与 GABARAP 和网格蛋白衔接蛋白 AP2 的结合。最后,我们证明特异性阻断 GABARAP-GABAR 复合物的形成会减少 GABA 能突触电流。总的来说,我们的结果表明 GABARAP/GABARAPL1(而非 Atg8 家族蛋白的其他成员)通过调节受体的运输来特异性调节 GABARs 的突触定位。