Rezk Amgad R, Ahmed Heba, Ramesan Shwathy, Yeo Leslie Y
Micro/Nanophysics Research Laboratory School of Engineering RMIT University Melbourne VIC 3000 Australia.
Adv Sci (Weinh). 2020 Nov 23;8(1):2001983. doi: 10.1002/advs.202001983. eCollection 2020 Jan.
Ultrasound constitutes a powerful means for materials processing. Similarly, a new field has emerged demonstrating the possibility for harnessing sound energy sources at considerably higher frequencies (10 MHz to 1 GHz) compared to conventional ultrasound (⩽3 MHz) for synthesizing and manipulating a variety of bulk, nanoscale, and biological materials. At these frequencies and the typical acoustic intensities employed, cavitation-which underpins most sonochemical or, more broadly, ultrasound-mediated processes-is largely absent, suggesting that altogether fundamentally different mechanisms are at play. Examples include the crystallization of novel morphologies or highly oriented structures; exfoliation of 2D quantum dots and nanosheets; polymer nanoparticle synthesis and encapsulation; and the possibility for manipulating the bandgap of 2D semiconducting materials or the lipid structure that makes up the cell membrane, the latter resulting in the ability to enhance intracellular molecular uptake. These fascinating examples reveal how the highly nonlinear electromechanical coupling associated with such high-frequency surface vibration gives rise to a variety of static and dynamic charge generation and transfer effects, in addition to molecular ordering, polarization, and assembly-remarkably, given the vast dimensional separation between the acoustic wavelength and characteristic molecular length scales, or between the MHz-order excitation frequencies and typical THz-order molecular vibration frequencies.
超声是材料加工的一种强大手段。同样,一个新的领域已经出现,它展示了利用比传统超声(≤3MHz)频率高得多(10MHz至1GHz)的声能源来合成和操控各种块状、纳米级和生物材料的可能性。在这些频率以及所采用的典型声强下,空化现象(它是大多数声化学过程或更广泛地说是超声介导过程的基础)基本不存在,这表明有完全不同的基本机制在起作用。例子包括新型形态或高度取向结构的结晶;二维量子点和纳米片的剥离;聚合物纳米颗粒的合成与封装;以及操控二维半导体材料的带隙或构成细胞膜的脂质结构的可能性,后者导致增强细胞内分子摄取的能力。这些引人入胜的例子揭示了与这种高频表面振动相关的高度非线性机电耦合如何除了分子排序、极化和组装之外,还产生各种静态和动态的电荷产生和转移效应——值得注意的是,考虑到声波长与特征分子长度尺度之间,或者兆赫兹级激发频率与典型太赫兹级分子振动频率之间存在巨大的维度差异。