Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
J Integr Plant Biol. 2021 Apr;63(4):707-722. doi: 10.1111/jipb.13068. Epub 2021 Mar 3.
Heterochromatin is widespread in eukaryotic genomes and has diverse impacts depending on its genomic context. Previous studies have shown that a protein complex, the ASI1-AIPP1-EDM2 (AAE) complex, participates in polyadenylation regulation of several intronic heterochromatin-containing genes. However, the genome-wide functions of AAE are still unknown. Here, we show that the ASI1 and EDM2 mostly target the common genomic regions on a genome-wide level and preferentially interacts with genetic heterochromatin. Polyadenylation (poly(A) sequencing reveals that AAE complex has a substantial influence on poly(A) site usage of heterochromatin-containing genes, including not only intronic heterochromatin-containing genes but also the genes showing overlap with heterochromatin. Intriguingly, AAE is also involved in the alternative splicing regulation of a number of heterochromatin-overlapping genes, such as the disease resistance gene RPP4. We provided evidence that genic heterochromatin is indispensable for the recruitment of AAE in polyadenylation and splicing regulation. In addition to conferring RNA processing regulation at genic heterochromatin-containing genes, AAE also targets some transposable elements (TEs) outside of genes (including TEs sandwiched by genes and island TEs) for epigenetic silencing. Our results reveal new functions of AAE in RNA processing and epigenetic silencing, and thus represent important advances in epigenetic regulation.
异染色质在真核生物基因组中广泛存在,其影响因基因组背景而异。先前的研究表明,一个蛋白质复合物,ASI1-AIPP1-EDM2 (AAE) 复合物,参与了几个内含子异染色质基因的聚腺苷酸化调控。然而,AAE 的全基因组功能仍然未知。在这里,我们表明 ASI1 和 EDM2 主要在全基因组水平上靶向共同的基因组区域,并优先与遗传异染色质相互作用。聚腺苷酸化 (poly(A) 测序) 揭示 AAE 复合物对包含异染色质的基因的 poly(A) 位点使用有很大的影响,包括不仅是内含子异染色质基因,还有与异染色质重叠的基因。有趣的是,AAE 还参与了一些异染色质重叠基因的可变剪接调控,如抗病基因 RPP4。我们提供的证据表明,基因异染色质对于 AAE 在聚腺苷酸化和剪接调控中的招募是必不可少的。除了赋予 RNA 处理调节基因异染色质外,AAE 还针对一些位于基因之外的转座元件 (TEs) (包括被基因夹在中间的 TEs 和岛 TEs) 进行表观遗传沉默。我们的结果揭示了 AAE 在 RNA 处理和表观遗传沉默中的新功能,因此代表了表观遗传调控的重要进展。