Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
Department of Chemistry and Bioengineering, Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun University, Yichun 336000, China.
J Am Chem Soc. 2021 Jan 27;143(3):1521-1528. doi: 10.1021/jacs.0c11420. Epub 2021 Jan 13.
Metal-oxygen complexes, such as metal-oxo [M(O)], -hydroxo [M(OH)], -peroxo [M(O)], -hydroperoxo [M(OOH)], and -superoxo [M(O)] species, are capable of conducting oxygen atom transfer (OAT) reactions with organic substrates, such as thioanisole (PhSMe) and triphenylphosphine (PhP). However, OAT of metal-aqua complexes, [M(OH)], has yet to be reported. We report herein OAT of a mononuclear non-heme Mn(III)-aqua complex, [(dpaq)Mn(OH)] (, dpaq = 2-[bis(pyridin-2-ylmethyl)]amino--quinolin-8-yl-acetamidate), to PhSMe and PhP derivatives for the first time; it is noted that no OAT occurs from the corresponding Mn(III)-hydroxo complex, [(dpaq)Mn(OH)] (), to the substrates. Mechanistic studies reveal that OAT reaction of occurs via electron transfer from 4-methoxythioanisole to to produce the 4-methoxythioanisole radical cation and [(dpaq)Mn(OH)], followed by nucleophilic attack of HO in [(dpaq)Mn(OH)] to the 4-methoxythioanisole radical cation to produce an OH adduct radical, 2,4-(MeO)CHS(OH)Me, which disproportionates or undergoes electron transfer to to yield methyl 4-methoxyphenyl sulfoxide. Formation of the thioanisole radical cation derivatives is detected by the stopped-flow transient absorption measurements in OAT from to 2,4-dimethoxythioanisole and 3,4-dimethoxythioanisole, being compared with that in the photoinduced electron transfer oxidation of PhSMe derivatives, which are detected by laser-induced transient absorption measurements. Similarly, OAT from to PhP occurs via electron transfer from PhP to , and the proton effect on the reaction rate has been discussed. The rate constants of electron transfer from electron donors, including PhSMe and PhP derivatives, to are fitted well by the electron transfer driving force dependence of the rate constants predicted by the Marcus theory of outer-sphere electron transfer.
金属-氧配合物,如金属过氧[M(O)]、-羟基金属[M(OH)]、-过氧金属[M(O)]、-过氧金属[M(OOH)]和-超氧金属[M(O)],能够与有机底物如硫醚(PhSMe)和三苯基膦(PhP)进行氧原子转移(OAT)反应。然而,金属水合配合物[M(OH)]的 OAT 尚未被报道。本文首次报道了单核非血红素 Mn(III)-水合配合物[(dpaq)Mn(OH)](,dpaq = 2-[bis(pyridin-2-ylmethyl)]amino--quinolin-8-yl-acetamidate)对 PhSMe 和 PhP 衍生物的 OAT;值得注意的是,相应的 Mn(III)-羟基金属配合物[(dpaq)Mn(OH)]()对底物没有发生 OAT。机理研究表明,发生 OAT 反应时,电子从 4-甲氧基硫醚转移到[(dpaq)Mn(OH)]中,生成 4-甲氧基硫醚自由基阳离子和[(dpaq)Mn(OH)],随后[(dpaq)Mn(OH)]中的 HO 对 4-甲氧基硫醚自由基阳离子进行亲核攻击,生成 OH 加合物自由基 2,4-(MeO)CHS(OH)Me,它可以歧化或向[(dpaq)Mn(OH)]进行电子转移,生成甲基 4-甲氧基苯基亚砜。通过在 OAT 中从[(dpaq)Mn(OH)]到 2,4-二甲氧基硫醚和 3,4-二甲氧基硫醚的停流瞬变吸收测量,检测到硫醚自由基阳离子衍生物的形成,并与通过激光诱导瞬态吸收测量检测到的 PhSMe 衍生物的光诱导电子转移氧化进行了比较。同样,[(dpaq)Mn(OH)]与 PhP 的 OAT 是通过 PhP 向[Mn(III)(O)]的电子转移发生的,并且讨论了反应速率对质子的影响。通过外球电子转移的 Marcus 理论预测的速率常数与电子给体(包括 PhSMe 和 PhP 衍生物)向[Mn(III)(O)]的电子转移驱动力的关系,很好地拟合了电子转移的速率常数。