MONC Team, Inria Bordeaux Sud-Ouest and Institut de Mathématiques de Bordeaux, CNRS, University of Bordeaux, Bordeaux, France.
Paediatric Hematology and Oncology Department, Hôpital pour enfant de La Timone, AP-HM, Marseille, France.
JCO Clin Cancer Inform. 2021 Jan;5:81-90. doi: 10.1200/CCI.20.00092.
Prognosis of high-risk neuroblastoma (HRNB) remains poor despite multimodal therapies. Better prediction of survival could help to refine patient stratification and better tailor treatments. We established a mechanistic model of metastasis in HRNB relying on two processes: growth and dissemination relying on two patient-specific parameters: the dissemination rate μ and the minimal visible lesion size S. This model was calibrated using diagnosis values of primary tumor size, lactate dehydrogenase circulating levels, and the meta-iodobenzylguanidine International Society for Paediatric Oncology European (SIOPEN) score from nuclear imaging, using data from 49 metastatic patients. It was able to describe the data of total tumor mass (lactate dehydrogenase, R > 0.99) and number of visible metastases (SIOPEN, R = 0.96). A prediction model of overall survival (OS) was then developed using Cox regression. Clinical variables alone were not able to generate a model with sufficient OS prognosis ability ( = .507). The parameter μ was found to be independent of the clinical variables and positively associated with OS ( = .0739 in multivariable analysis). Critically, addition of this computational biomarker significantly improved prediction of OS with a concordance index increasing from 0.675 (95% CI, 0.663 to 0.688) to 0.733 (95% CI, 0.722 to 0.744, < .0001), resulting in significant OS prognosis ability ( = .0422).
尽管采用了多种治疗方法,高危神经母细胞瘤(HRNB)的预后仍然很差。更好的生存预测可以帮助完善患者分层,并更好地调整治疗方法。我们建立了一个基于两个过程的 HRNB 转移的机制模型:生长和扩散,依赖于两个患者特定的参数:扩散率μ和最小可见病变大小 S。该模型使用来自核成像的原发肿瘤大小、乳酸脱氢酶循环水平和meta-碘苄基胍国际儿科肿瘤学会欧洲(SIOPEN)评分的诊断值进行了校准,使用了 49 例转移性患者的数据。它能够描述总肿瘤质量(乳酸脱氢酶,R > 0.99)和可见转移数量(SIOPEN,R = 0.96)的数据。然后使用 Cox 回归建立了总体生存(OS)预测模型。临床变量本身无法生成具有足够 OS 预后能力的模型(= 0.507)。发现参数μ独立于临床变量,并与 OS 呈正相关(多变量分析中= 0.0739)。至关重要的是,这种计算生物标志物的加入显著提高了 OS 的预测能力,一致性指数从 0.675(95%CI,0.663 至 0.688)增加到 0.733(95%CI,0.722 至 0.744,< 0.0001),导致显著的 OS 预后能力(= 0.0422)。