Data Science & Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD.
Oncology Biometrics, Oncology R&D, AstraZeneca, Warsaw, Poland.
JCO Clin Cancer Inform. 2022 Mar;6:e2100173. doi: 10.1200/CCI.21.00173.
Overall survival (OS) is the gold standard end point for establishing clinical benefits in phase III oncology trials. However, these trials are associated with low success rates, largely driven by failure to meet the primary end point. Surrogate end points such as progression-free survival (PFS) are increasingly being used as indicators of biologic drug activity and to inform early go/no-go decisions in oncology drug development. We developed OSPred, a digital health aid that combines actual clinical data and machine intelligence approaches to visualize correlation trends between early (PFS-based) and late (OS) end points and provide support for shared decision making in the drug development pipeline.
OSPred is based on a trial-level data set of 81 reports (35 anticancer drugs with various mechanisms of action; 156 observations) in non-small-cell lung cancer (NSCLC). OSPred was developed using R Shiny, with packages ggplot2, metafor, boot, dplyr, and mvtnorm, to analyze and visualize correlation results and predict OS hazard ratio (HR OS) on the basis of user-inputted PFS-based data, namely, HR PFS, or the odds ratio of PFS at 4 (OR PFS4) or 6 (OR PFS6) months.
The three main features of the tool are as follows: prediction of HR OS on the basis of user-inputted early end point values; visualization of comparisons of the user's investigational drug with other drugs in the NSCLC setting, including by specific MoA; and creation of a probability density chart, providing point prediction and CIs for HR OS. A working version of the tool for download is linked.
The OSPred tool offers interactive visualization of clinical trial end point correlations with reference to a large pool of historical NSCLC studies. Its focused capability has the potential to digitally transform and accelerate data-driven decision making as part of the drug development process.
总生存期(OS)是确立 III 期肿瘤学试验临床获益的金标准终点。然而,这些试验的成功率较低,主要是由于未能达到主要终点。无进展生存期(PFS)等替代终点越来越多地被用作生物药物活性的指标,并为肿瘤药物开发中的早期去留决策提供信息。我们开发了 OSPred,这是一种数字健康辅助工具,它结合了实际的临床数据和机器智能方法,以可视化早期(基于 PFS)和晚期(OS)终点之间的相关趋势,并为药物开发管道中的共同决策提供支持。
OSPred 基于非小细胞肺癌(NSCLC)的 81 份报告(35 种具有不同作用机制的抗癌药物;156 个观察结果)的试验级数据集。OSPred 是使用 R Shiny 开发的,使用了 ggplot2、metafor、boot、dplyr 和 mvtnorm 等包来分析和可视化相关结果,并根据用户输入的基于 PFS 的数据(即 PFS 的 HR OS、4 个月时的 PFS 比值 OR PFS4 或 6 个月时的 OR PFS6)预测 OS 风险比(HR OS)。
该工具的三个主要功能如下:根据用户输入的早期终点值预测 HR OS;基于 NSCLC 环境中的其他药物,包括特定 MoA,可视化用户研究药物与其他药物的比较;以及创建概率密度图,为 HR OS 提供点预测和置信区间。可下载的工具工作版本链接。
OSPred 工具提供了对临床试验终点相关性的交互式可视化,参考了大量 NSCLC 历史研究。其专注的功能有可能数字化地改变和加速作为药物开发过程一部分的数据驱动决策。