Suppr超能文献

利用张量字典学习的低秩加稀疏正则化在一分钟内进行全脑髓鞘水成像。

Whole Brain Myelin Water Mapping in One Minute Using Tensor Dictionary Learning With Low-Rank Plus Sparse Regularization.

出版信息

IEEE Trans Med Imaging. 2021 Apr;40(4):1253-1266. doi: 10.1109/TMI.2021.3051349. Epub 2021 Apr 1.

Abstract

The quantification of myelin water content in the brain can be obtained by the multi-echo [Formula: see text] weighted images ( [Formula: see text]WIs). To accelerate the long acquisition, a novel tensor dictionary learning algorithm with low-rank and sparse regularization (TDLLS) is proposed to reconstruct the [Formula: see text]WIs from the undersampled data. The proposed algorithm explores the local and nonlocal similarity and the global temporal redundancy in the real and imaginary parts of the complex relaxation signals. The joint application of the low-rank constraints on the dictionaries and the sparse constraints on the core coefficient tensors improves the performance of the tensor-based recovery. Parallel imaging is incorporated into the TDLLS algorithm (pTDLLS) for further acceleration. A pulse sequence is proposed to prospectively undersample the Ky-t space to obtain the whole brain high-quality myelin water fraction (MWF) maps within 1 minute at an undersampling rate (R) of 6.

摘要

脑髓鞘水含量的定量可以通过多回波[公式:见正文]加权图像([公式:见正文]WIs)获得。为了加速长采集,提出了一种具有低秩和稀疏正则化的新型张量字典学习算法(TDLLS),从欠采样数据中重建[公式:见正文]WIs。所提出的算法探索了复数弛豫信号的实部和虚部中的局部和非局部相似性以及全局时间冗余性。字典上的低秩约束和核张量上的稀疏约束的联合应用提高了基于张量的恢复性能。并行成像被纳入 TDLLS 算法(pTDLLS)中以进一步加速。提出了一种脉冲序列,以前瞻性地欠采样 Ky-t 空间,在 1 分钟内以 6 的欠采样率(R)获得全脑高质量髓鞘水分数(MWF)图。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验