Suppr超能文献

共转录剪接调控哺乳动物红细胞生成过程中的 3' 末端切割。

Co-transcriptional splicing regulates 3' end cleavage during mammalian erythropoiesis.

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.

Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Mol Cell. 2021 Mar 4;81(5):998-1012.e7. doi: 10.1016/j.molcel.2020.12.018. Epub 2021 Jan 12.

Abstract

Pre-mRNA processing steps are tightly coordinated with transcription in many organisms. To determine how co-transcriptional splicing is integrated with transcription elongation and 3' end formation in mammalian cells, we performed long-read sequencing of individual nascent RNAs and precision run-on sequencing (PRO-seq) during mouse erythropoiesis. Splicing was not accompanied by transcriptional pausing and was detected when RNA polymerase II (Pol II) was within 75-300 nucleotides of 3' splice sites (3'SSs), often during transcription of the downstream exon. Interestingly, several hundred introns displayed abundant splicing intermediates, suggesting that splicing delays can take place between the two catalytic steps. Overall, splicing efficiencies were correlated among introns within the same transcript, and intron retention was associated with inefficient 3' end cleavage. Remarkably, a thalassemia patient-derived mutation introducing a cryptic 3'SS improved both splicing and 3' end cleavage of individual β-globin transcripts, demonstrating functional coupling between the two co-transcriptional processes as a determinant of productive gene output.

摘要

在许多生物中,前体 mRNA 加工步骤与转录紧密协调。为了确定哺乳动物细胞中转录延伸和 3' 端形成如何与共转录剪接整合,我们在小鼠红细胞生成过程中进行了单个新生 RNA 的长读测序和精确运行测序 (PRO-seq)。剪接没有伴随着转录暂停,并且在 RNA 聚合酶 II (Pol II) 位于 3' 剪接位点 (3'SS) 的 75-300 个核苷酸内时被检测到,通常在下游外显子的转录过程中。有趣的是,数百个内含子显示出丰富的剪接中间体,表明两个催化步骤之间可能发生剪接延迟。总体而言,同一转录本内的内含子之间的剪接效率相关,内含子保留与 3' 端切割效率低下有关。值得注意的是,一种由地中海贫血患者衍生的突变引入了一个隐蔽的 3'SS,提高了单个β-珠蛋白转录本的剪接和 3' 端切割效率,证明了这两个共转录过程之间的功能偶联是产生有功能的基因产物的决定因素。

相似文献

9
A model in vitro system for co-transcriptional splicing.体外共转录剪接模型。
Nucleic Acids Res. 2010 Nov;38(21):7570-8. doi: 10.1093/nar/gkq620. Epub 2010 Jul 14.

引用本文的文献

1
The RNA revolution in medicine: from gene regulation to clinical therapeutics.医学中的RNA革命:从基因调控到临床治疗
Anim Cells Syst (Seoul). 2025 Aug 25;29(1):523-543. doi: 10.1080/19768354.2025.2548253. eCollection 2025.
6
The regulation and function of post-transcriptional RNA splicing.转录后RNA剪接的调控与功能
Nat Rev Genet. 2025 Jun;26(6):378-394. doi: 10.1038/s41576-025-00836-z. Epub 2025 Apr 11.
8
Transcriptomics in the era of long-read sequencing.长读长测序时代的转录组学
Nat Rev Genet. 2025 Mar 28. doi: 10.1038/s41576-025-00828-z.

本文引用的文献

3
A potential mechanism underlying U1 snRNP inhibition of the cleavage step of mRNA 3' processing.U1 snRNP 抑制 mRNA 3' 加工切割步骤的潜在机制。
Biochem Biophys Res Commun. 2020 Sep 10;530(1):196-202. doi: 10.1016/j.bbrc.2020.06.092. Epub 2020 Aug 1.
6
RNA Splicing by the Spliceosome.剪接体的 RNA 剪接。
Annu Rev Biochem. 2020 Jun 20;89:359-388. doi: 10.1146/annurev-biochem-091719-064225. Epub 2019 Dec 3.
8
Mechanistic insights into mRNA 3'-end processing.mRNA 3'-端加工的机制研究。
Curr Opin Struct Biol. 2019 Dec;59:143-150. doi: 10.1016/j.sbi.2019.08.001. Epub 2019 Sep 6.
9
Nascent RNA and the Coordination of Splicing with Transcription.初生 RNA 与转录剪接的协调。
Cold Spring Harb Perspect Biol. 2019 Aug 1;11(8):a032227. doi: 10.1101/cshperspect.a032227.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验