Civil, Environmental, and Architectural Engineering, Korea University, Seoul 136-701, Republic of Korea; Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Water Res. 2021 Mar 1;191:116803. doi: 10.1016/j.watres.2021.116803. Epub 2021 Jan 4.
This study investigated the influence of adding peroxydisulfate (PDS) to a photoelectrocatalysis (PEC) system using self-doped TiO nanotube arrays (bl-TNAs) for organic pollutant degradation. The addition of 1.0 mM PDS increased the bisphenol-A (BPA) removal efficiency of PEC (PEC/PDS) from 65.0% to 85.9% within 1 h. The enhancement could be attributed to the high formation yield of hydroxyl radicals (OH), increased charge separation, and assistance of the sulfate radicals (SO). The PDS concentration and applied potential bias were influential operating parameters for the PEC/PDS system. In addition, the system exhibited a highly stable performance over a wide range of pH values and background inorganic and organic constituents, such as chloride ions, bicarbonate, and humic acid. Further, the degradation performance of the organic pollutant mixture, including BPA, 4-chlorophenol (4-CP), sulfamethoxazole (SMX), and carbamazepine (CBZ), was evaluated in 0.1 M (NH)SO solution and real surface water. The degradation efficiency increased in the order of CBZ < SMX < 4-CP < BPA in the PEC and PEC/PDS systems with both water matrices. Compared with the PEC system, the PEC/PDS (1.0 mM) system showed a threefold higher pseudo first-order reaction rate constant for BPA among pollutant mixtures in surface water. This was attributed to enhanced OH production and the selective nature of SO. The pseudo first-order reaction rate constants of other pollutants, i.e., 4-CP, SMX, and CBZ increased ca. twofold in the PEC/PDS system. The results of this study showed that the PEC/PDS system with bl-TNAs is a viable technology for oxidative treatment.
这项研究考察了在使用自掺杂 TiO 纳米管阵列(bl-TNAs)的光电催化(PEC)系统中添加过二硫酸盐(PDS)对有机污染物降解的影响。在 1 小时内,PEC(PEC/PDS)中添加 1.0 mM PDS 将双酚 A(BPA)的去除效率从 65.0%提高到 85.9%。这种增强可以归因于羟基自由基(OH)的高生成率、增加的电荷分离和硫酸根自由基(SO)的辅助作用。PDS 浓度和应用的电位偏置是 PEC/PDS 系统的重要操作参数。此外,该系统在很宽的 pH 值范围和背景无机和有机成分(如氯离子、碳酸氢根和腐殖酸)下表现出高度稳定的性能。此外,在 0.1 M(NH)SO 溶液和实际地表水中,评估了有机污染物混合物(包括 BPA、4-氯苯酚(4-CP)、磺胺甲恶唑(SMX)和卡马西平(CBZ))的降解性能。在 PEC 和 PEC/PDS 系统中,在两种水基质中,有机污染物混合物的降解效率顺序为 CBZ<SMX<4-CP<BPA。与 PEC 系统相比,PEC/PDS(1.0 mM)系统在地表水中的污染物混合物中对 BPA 的拟一级反应速率常数高出三倍。这归因于 OH 生成的增强和 SO 的选择性。其他污染物(即 4-CP、SMX 和 CBZ)的拟一级反应速率常数在 PEC/PDS 系统中增加了约两倍。这项研究的结果表明,具有 bl-TNAs 的 PEC/PDS 系统是一种可行的氧化处理技术。