Suppr超能文献

基于眼部信号的视频睡眠检测在睡眠障碍患者清醒维持测试的标准条件下进行。

Video-based sleep detection using ocular signals under the standard conditions of the maintenance of wakefulness test in patients with sleep disorders.

机构信息

Interdisciplinary Center of Sleep Medicine , Charite Universitatsmedizin Berlin, Berlin, Germany.

Phasya SA, Seraing (Liège), Belgium.

出版信息

Physiol Meas. 2021 Feb 6;42(1):014004. doi: 10.1088/1361-6579/abdb7e.

Abstract

OBJECTIVE

Excessive sleepiness is a physiological reaction to sleep deficiency but can also be caused by underlying medical conditions. Detecting sleep is essential in preventing accidents and for medical diagnostics. Polysomnography (PSG) is considered the gold standard for the detection of sleep. More convenient video-based methods for detecting sleepiness have recently emerged.

APPROACH

The possibility of detecting sleep using video-based ocular signals will be assessed using PSG for reference. Ocular signals and EEG are recorded in parallel under the conditions of the maintenance of wakefulness test (MWT) in 30 patients with sleep disorders.

MAIN RESULTS

In detecting sleep, the ocular signal percentage of eyelid closure (PERCLOS) is superior to other ocular signals, resulting in an area under the curve of 0.88. Using a PERCLOS cutoff value of 0.76, sleep is correctly detected with a sensitivity of 89%, a specificity of 76%, the sleep latency is moderately correlated to the reference (rho = 0.66, p < 0.05) and the 95% confidence interval is ±21.1 min.

SIGNIFICANCE

Ocular signals can facilitate the detection of sleep under the conditions of the MWT but sleep detection should not solely rely on ocular signals. If PSG recordings are not practicable or if a signal is needed that responds relatively early in the wake/sleep transition, the use of PERCLOS for the detection of sleep is reasonable.

摘要

目的

过度嗜睡是睡眠不足的生理反应,但也可能由潜在的医疗状况引起。检测睡眠对于预防事故和医疗诊断至关重要。多导睡眠图(PSG)被认为是检测睡眠的金标准。最近出现了更方便的基于视频的检测嗜睡的方法。

方法

将使用 PSG 作为参考,评估使用基于视频的眼部信号检测睡眠的可能性。在 30 名睡眠障碍患者的清醒维持试验(MWT)条件下,同时记录眼部信号和 EEG。

主要结果

在检测睡眠时,眼睑闭合百分比(PERCLOS)优于其他眼部信号,曲线下面积为 0.88。使用 PERCLOS 截断值为 0.76,可以以 89%的灵敏度、76%的特异性正确检测睡眠,睡眠潜伏期与参考值中度相关(rho=0.66,p<0.05),95%置信区间为±21.1 分钟。

意义

眼部信号可以辅助 MWT 条件下的睡眠检测,但睡眠检测不应仅依赖于眼部信号。如果 PSG 记录不可行,或者需要在觉醒/睡眠转换中相对较早响应的信号,则使用 PERCLOS 检测睡眠是合理的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验