Suppr超能文献

利用真实世界数据为临床试验实施电子招募支持选择相关入选标准。

Leveraging Real-World Data for the Selection of Relevant Eligibility Criteria for the Implementation of Electronic Recruitment Support in Clinical Trials.

机构信息

Chair of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.

Institute for Electronics Engineering, Department Electrical Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.

出版信息

Appl Clin Inform. 2021 Jan;12(1):17-26. doi: 10.1055/s-0040-1721010. Epub 2021 Jan 13.

Abstract

BACKGROUND

Even though clinical trials are indispensable for medical research, they are frequently impaired by delayed or incomplete patient recruitment, resulting in cost overruns or aborted studies. Study protocols based on real-world data with precisely expressed eligibility criteria and realistic cohort estimations are crucial for successful study execution. The increasing availability of routine clinical data in electronic health records (EHRs) provides the opportunity to also support patient recruitment during the prescreening phase. While solutions for electronic recruitment support have been published, to our knowledge, no method for the prioritization of eligibility criteria in this context has been explored.

METHODS

In the context of the Electronic Health Records for Clinical Research (EHR4CR) project, we examined the eligibility criteria of the KATHERINE trial. Criteria were extracted from the study protocol, deduplicated, and decomposed. A paper chart review and data warehouse query were executed to retrieve clinical data for the resulting set of simplified criteria separately from both sources. Criteria were scored according to disease specificity, data availability, and discriminatory power based on their content and the clinical dataset.

RESULTS

The study protocol contained 35 eligibility criteria, which after simplification yielded 70 atomic criteria. For a cohort of 106 patients with breast cancer and neoadjuvant treatment, 47.9% of data elements were captured through paper chart review, with the data warehouse query yielding 26.9% of data elements. Score application resulted in a prioritized subset of 17 criteria, which yielded a sensitivity of 1.00 and specificity 0.57 on EHR data (paper charts, 1.00 and 0.80) compared with actual recruitment in the trial.

CONCLUSION

It is possible to prioritize clinical trial eligibility criteria based on real-world data to optimize prescreening of patients on a selected subset of relevant and available criteria and reduce implementation efforts for recruitment support. The performance could be further improved by increasing EHR data coverage.

摘要

背景

尽管临床试验对于医学研究是不可或缺的,但它们经常因患者招募延迟或不完整而受到影响,导致成本超支或研究中止。基于真实世界数据并具有精确表达的入选标准和现实队列估计的研究方案对于成功执行研究至关重要。电子健康记录(EHR)中常规临床数据的可用性不断增加,为在预筛选阶段也支持患者招募提供了机会。虽然已经发布了用于电子招募支持的解决方案,但据我们所知,尚未探讨过在此背景下的入选标准优先级排序方法。

方法

在电子病历用于临床研究(EHR4CR)项目的背景下,我们检查了 KATHERINE 试验的入选标准。从研究方案中提取、去重并分解标准。分别从两个来源执行纸质图表审查和数据仓库查询,以检索简化标准集的临床数据。根据其内容和临床数据集,基于疾病特异性、数据可用性和区分能力对标准进行评分。

结果

研究方案包含 35 项入选标准,简化后产生 70 项原子标准。对于 106 例患有乳腺癌和新辅助治疗的患者队列,47.9%的数据元素通过纸质图表审查捕获,数据仓库查询产生 26.9%的数据元素。评分应用产生了一个优先子集的 17 项标准,与试验中的实际招募相比,EHR 数据(纸质图表)的敏感性为 1.00,特异性为 0.57。

结论

可以根据真实世界数据对临床试验入选标准进行优先级排序,以优化选定相关且可用标准子集的患者预筛选,并减少招募支持的实施工作。通过增加 EHR 数据的覆盖范围,可以进一步提高性能。

相似文献

引用本文的文献

本文引用的文献

5
MIRACUM: Medical Informatics in Research and Care in University Medicine.MIRACUM:大学医学研究与医疗中的医学信息学
Methods Inf Med. 2018 Jul;57(S 01):e82-e91. doi: 10.3414/ME17-02-0025. Epub 2018 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验