Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
Graduate Program in Virology, Harvard Medical School, Boston, MA, USA.
Nature. 2021 Feb;590(7847):666-670. doi: 10.1038/s41586-020-03124-4. Epub 2021 Jan 13.
A non-enveloped virus requires a membrane lesion to deliver its genome into a target cell. For rotaviruses, membrane perforation is a principal function of the viral outer-layer protein, VP4. Here we describe the use of electron cryomicroscopy to determine how VP4 performs this function and show that when activated by cleavage to VP8* and VP5*, VP4 can rearrange on the virion surface from an 'upright' to a 'reversed' conformation. The reversed structure projects a previously buried 'foot' domain outwards into the membrane of the host cell to which the virion has attached. Electron cryotomograms of virus particles entering cells are consistent with this picture. Using a disulfide mutant of VP4, we have also stabilized a probable intermediate in the transition between the two conformations. Our results define molecular mechanisms for the first steps of the penetration of rotaviruses into the membranes of target cells and suggest similarities with mechanisms postulated for other viruses.
一种无包膜病毒需要通过膜损伤将其基因组递送到靶细胞中。对于轮状病毒,膜穿孔是病毒外层蛋白 VP4 的主要功能。在这里,我们描述了使用电子低温显微镜来确定 VP4 如何执行此功能,并表明当通过切割激活为 VP8和 VP5时,VP4 可以在病毒粒子表面从“直立”构象重新排列为“反向”构象。反向结构将先前埋藏的“脚”结构域向外投射到病毒已附着的宿主细胞的膜中。进入细胞的病毒粒子的电子冷冻断层扫描图像与该图一致。使用 VP4 的二硫键突变体,我们还稳定了两种构象之间过渡的可能中间产物。我们的结果定义了轮状病毒进入靶细胞膜的最初步骤的分子机制,并表明与其他病毒推测的机制具有相似性。